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Plasma disruptions (®

@ The capability to carried out plasma pulses safely is an important goal towards the
optimization of an operating scenario:

safety _ thermal loads, electromagnetic loads,
formation and impact of runaway electrons
Disruption
, limits to the range of accessible
scenario plasma parameters
disruption

prevention . plasma control throughout the entire evolution of
the pulse (break down in different “control phases”)

Prevention &
shutdown

_ terminate the pulse in a controlled way or alleviate
the consequences of unavoidable disruptions

emergency
shutdown
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Disruption prevention & emergency shutdown &

@ Disruption prevention is a multi-stage approach covering the full range of control regimes to
prevent the disruption; emergency shutdown involves the anticipated termination of a pulse.

DISRUPTION PREVENTION

5 | ] DIsRUPTION
Ip l %Eﬁ“:&g i* 'PROXIMITY CONTROL »i A%%{XSZE i MITIGATION
: Flattop phase | K h
| i U ?2
& | | o g%
g, | : OPERATIONAL LIMIT LDER m
| | - . /% = 7
Q.O@ | REF. TARGET | I % 23
! '~ | =9
| . I ¥ ¥
| g 7 / .
, i 3 [A. Pau, EPS 2022]
Time (s)
“Disruption-free protocol" (ITPA- 10S)
REFERENCE ACTIVE EMERGENCY
SCENARIO AVOIDANCE SHUTDOWN
Keep the target scenario Keep stability while pushing Asynchronous response * Fast controlled
stable again disturbances performance by regulating when crossing operational shutdown
(ST, ELM, MHD modes, etc.) proximity to stability & boundaries (danger levels) o
controllability boundaries * Mitigation
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Disruption prediction N

@ Data-driven models derived from machine learning methods, with high accuracy levels
(success rate of above 95 %, false alarms rate of few %):

— : - training dataset, allowing
Supervised learning: ’ _
P 9 the model to learn over time

— Unsupervised learning: uplabeled data, helping to discpver
hidden patterns or data clustering

ML references >

@ Physics-driven models based on physics understanding of the phenomenon involved in a
particular class of disruptions:

— results easier to interpret in terms of plasma dynamics

— large amount of data for training is not required

Case study >

Gianluca Pucella | 2" IAEA Technical Meeting on Plasma Disruption and their Mitigation | ITER Headquarters | 20 July 2022 | Page 06



Machine Learning for disruption prediction ®

@ Remarkable success in data-driven models for disruption identification and real-time control,
including high-performance work models not limited to a specific device.

Neural Networks

B. Cannas et al 2007 A prediction tool for real-time
application in the disruption prediction system at JET
Nucl. Fusion 47 1559

R. Yoshino et al 2003 Neural-net disruption predictor in
JT-60U Nucl. Fusion 43 1771

Mapping and Manifold Learning

B. Cannas et al 2014 Overview of manifold learning
techniques for the investigation of disruptions on JET
Plasma Phys. Control. Fusion 56 114005

A. Pau et al 2019 A machine learning approach based on
generative topographic mapping for disruption prevention
and avoidance at JET Nucl. Fusion 59 106017

Decision Tree, CART, Random Forest, GBM

K.J. Montes et al 2019 Machine learning for disruption
warnings on Alcator C-Mod, DIII-D, and EAST Nucl.
Fusion 59 096015

A. Murari et al 2020 On the transfer of adaptive
predictors between different devices for both mitigation
and prevention of disruptions, Nucl. Fusion 60 056003

Support Vector Machines

J. Vega et al 2013 Results of the JET real-time disruption
predictor in the ITER-like wall campaigns, Fusion Eng.
Des. 88 1228

G. Ratta et al 2010 An advanced disruption predictor for
JET tested in a simulated real-time environment, Nucl.
Fusion 50 025005

Statistical Learning

Y. Zhang, G. Pautasso et al 2011 Prediction of
disruptions on ASDEX Upgrade using discriminant
analysis, Nucl. Fusion 51 063039

S.P. Gerhardt et al 2013 Detection of disruptions in the
high-B spherical torus NSTX Nucl. Fusion 53 063021

Deep Learning

J. Kates-Harbeck, A. Svyatkovskiy and W. Tang 2019
Predicting disruptive instabilities in controlled fusion
plasmas through deep learning Nature 568 526

J.X. Zhu et al 2021 Hybrid deep-learning architecture for
general disruption prediction across multiple tokamaks
Nucl. Fusion 61 026007
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Current ramp-up of the hybrid scenario at JET ®

b
. . _ _ 56 JPN: 92185 =
@ Physics understanding: double tearing modes in pulses e
with hollow Te-profiles [C.D. Challis, Nucl. Fusion 2020] “H a=2 ARARO
3_47"‘—’\/\/\/\/ "
* 33 :
: : E alGhollafiGda b e ol
Slower current ramp-up and higher density led to a stable % 32 PVANARNA R
scenario (reference scenario) S
3.0+ Ro
PR WREPROT Nt

344 3.46 3.48 3.50 352
t(s)

[G. Pucella, to be submitted]

active

avoidance -« Central heating
Te-profile peaking factor [M. Fontana e Density control
FED 2020] included in the JET RT —

control system [L. Piron FED 2021]

> « Early pulse termination

emergency  (implemented)
shutdown

JET MGI system, based on locked mode signals, can be triggered (mitigation)
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Tearing modes in plasma termination on JET

(@)

@ Tearing modes in the termination phase of pulses with anomalous Te-profiles

Temperature Hollowing

JPN: 96996
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[G. Pucella et al. Nucl. Fusion 2021]
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Termination phase: radiation emission and Te profiles )

JPN: 96996
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Temperature Hollowing: MHD activity

JPN: 96996
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Reconnection

3/2 Event

* Hollowing of Te profile
* Disappearance of g = 1 activity
» Sequence of modes with decreasing n
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=— Mirnov
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® ECE contours
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16.9 17.0 17.1 17.2 17.3 17.4

t(s)

2/1 mode characterized by a fast initial
mode rotation
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Edge Cooling: MHD activity

4 JPN: 92211
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» Peaked Te-profile 2/1 mode usually makes only a few
* Increasing variations on ECE contours turns before locking
near the g = 2 surface
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Destabilization mechanism

@ Tearing mode destabilization driven by the radial gradient of the current density profile:

d d 1 i i Cylindrical limit:
8 o0 = ) 04 3 I
B . )| =] (=& + : B =15 80=1"; =R
2 [ L Nt i v

zero pressure limit

O Current profile dominated by the ohmic contribution in the termination phase and
high resistivity due to low temperature:

i Zef]' /7;'3/2

O Current profile changing on a relatively short resistive diffusion time scale
reflecting the changes in the electron temperature profile:

T z/U()Lz/ﬂ

O Possibility of 2/1 tearing modes linearly destabilized by changes in the current
density profile.

Gianluca Pucella | 2 |AEA Technical Meeting on Plasma Disruption and their Mitigation | ITER Headquarters | 20 July 2022 | Page 13



Broadening and shrinking of current density profile ®)

_ shrinking in case of

Edge Cooling and

can destabilize a 2/1
tearing mode as a consequence
of J-profile changes:

" edge cooling

- in case of

" temperature hollowing

J(p)

J(p)

1,5

0,5+

0,0

1,0}

\§

0,5t

0,0

1p1= 0o G- F -k

1,0}

t1 -

- 13

2 \\

0,0

,| Is the current density profile changing
before the mode onset ?
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| TRANSP

Open questions

\ 4

Do profile changes lead to an unstable
scenario ?

"| simulations

A 4

Linear stability
analysis
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TRANSP simulations (®
@ Interpretative TRANSP simulations carried out for the two pulses mentioned before:
JPN 96996 ( ) and JPN 92211 (edge cooling).
Te & ne: high-resolution TS ; Ti=Te ; J: poloidal field equation solved ; m: Spitzer
JPN: 96996 JPN: 92211
41 %re hlolllovxllinlg- 4t %dgelcéoling :
s 3t ] 3l V. |
g 2r E 2 .
(V)
— 1 o 2 |
0 /m ! 0 \/ !
08 16.00's | 0.8 12.55s |
- oo R =
S N E \/\ﬁ\
E 1 N = 1 _
< 04 q=2 = 04 \ q=2
=l - Stored energy and total
2 | 21 | neutrons within 10% of
00 Bro.ader.mg. L N 00 . \ . experimental values
'29 30 31 32 33 34 35 36 37 38 39 40 '29 30 31 32 33 34 35 36 37 38 39 40
R (m) R (m)

(O Changes in J-profile reflecting changes in Te-profile
Delay between Te and J profiles: (JPN 96996), 100 ms (JPN 92211)
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Linear stability analysis (®

=7

@ Linear stability criterion in the zero pressure approximation:
_dInB,| dnB,

A.’

HEE Jump across the mode
- _Mmag ; A/< 0 pressure, curvature N A»’ < K( ﬁ’ 1/77) p

deg a0 resonant surface
JPN: 96996 JPN: 92211
Temperature hollowing Edge cooling A’ calculated in toroidal
8t n 6 1 geometry neglecting
/. /' pressure effects

<1 4 a <1 4 /l

s_w B (/2] =
/

B (mT)
B (mT)

Internal discrete coils Internal discrete coils

4,0

L L L _4’0 L L L L
16,0 16,5 17,0 17,5 13,2 13,4 13,6 13,8 14,0

t(s) t(s)

A’ increasing L
K decreasing = destabilization process
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Recurrent paths

@ Paths leading to the onset of 2/1 tearing modes:

O Core accumulation
of high-Z impurities

Influx of low-Z
impurities

Outboard radiating
blob due to high-Z
impurities in the LFS

Temperature

Hollowing — |, broadening

Edge

Cooling — , Shrinking

2/1 TM destabilization
(A" increase)

Temperature
Hollowing

Edge Cooling

Spontaneous onset
Reconnection event
Hollowing, but final collapse from edge

Onset with peaked temperature profile

J, shrinking
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Temperature hollowing and edge cooling parameters

Temperature Hollowing Edge cooling V.. R=3.00-340m
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Temperature hollowing and edge cooling parameters (gﬁ‘;

@ TH and EC parameters for the two pulses mentioned before:

JPN 96996 - temperature hollowing
JPN 92211 - edge cooling

. | 96996 |
o 92211
LLJ 5L
Start of EC and ol
TH changes s H——1 Onset of 2/1
10 i tearing mode
I ™~
— R
0,5+
= |
% sl 1 O Capability of obtaining
S L alerts before the mode
= 1.0 onset
'8 0,5+
= [
-1,0 -0,8
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Non-disruptive and disruptive pulses ®

N

@ Dataset of 268 pulses: 136 non-disruptive, 132 disruptive
Baseline scenario: Ip = 2.5-3.7 MA

Non-disruptive pulses Disruptive pulses
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Empirical stability diagram

Temperature hollowing only
Temperature hollowing & edge cooling
Edge cooling only
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Characteristic time scales: mode locking and disruption )

=7

@ Mode locking used as a reference for the evaluation of characteristic time scales

Full dataset

136 non-disruptive

\ 4

2 ST triggered

268 pulses

A

132 disruptive

\ 4

66 Edge Cooling

30

Mode locking -> disruption

unmitigated
disruptions

N
o

low amplitude locked modes
soft disruptions

number of cases
S

0,0 0,1 0,2 0,3 0,4
tdisr B tML (s)

0,5

\ 4

64 Temperature Hollowing | (w/wo EC)

O Time from mode locking to
disruption depending on mode
dynamics and DMV logic
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Characteristic time scales: TH and EC @}‘;

@ Distributions of the time interval between the increase of EC and TH and the mode locking

40

Edge Cooling -> Mode Locking

1 |

W
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N
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|

S‘ EC only, ]
10 / w/o outboard blob |
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O EC could provide alerts within 200 ms
from the ML.: sufficient to anticipate
mitigation actions
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O TH could provide alerts up to 2 s
from the ML: an attempt to avoid
the disruption is possible
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Avoidance actions f?j\

N

@ Central additional heating to counteract the inward transport of high-Z impurities in case of
temperature hollowing

Additional power to be calibrated to avoid the onset of TM triggered by long-period ST-crashes

NO TM | ST-triggered TM
JET Data Display
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Mitigation actions

7

@ Gas injection, leading to a fast loss of thermal energy by photon radiation, in case of
edge cooling

O Mode saturation for EC in peaked Te profile

Thermal quench is induced by DMV intervention not crucial to anticipate DMV

O Explosive growth for EC in hollow Te profile

Some unmitigated thermal quenches . crucial to anticipate DMV
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: Saturated O More detailed analysis of the
explosive growth in view of ITER
0’00 — o , ) ) “n B
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Conclusions 7®)

@ Tearing modes in the termination phase of JET pulses in presence of an increased radiation
emission in core or edge plasma, leading to temperature hollowing and edge cooling

@ Both cases can lead to the linear destabilization of a 2/1 TM: J-broadening in case of
temperature hollowing, J-shrinking in case of edge cooling

@ Two parameters defined to highlight temperature hollowing (TH) and edge cooling (EC),
confirming that changes in Te-profile described by the two parameters strongly increases
the risk of destabilizing a 2/1 TM

@ Locked mode precursors based on TH & EC: TH could provide alerts (~ 1 s ) useful for
avoidance actions; EC could provide alerts (~ 100 ms) useful to anticipate mitigation actions

@ Additional information by the dynamics of n=1 mode signals, highlighting explosive modes to
be studied in view of ITER
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TRANSP setting

\=
Equilibrium: EFIT ZEFF: ZEFH flat profile
g: poloidal field equation solved PRAD: BOLP/TOBP flat profile
AF: no rotation provided Impurity: Be only
NE, TE: HRTS n: Spitzer
TI=TE
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Linear stability analysis &)

@ Linear stability criterion in the zero pressure approximation:
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Sequence of mode onsets

/,

(@)
-

@ A sequence of mode onsets with decreasing toroidal mode number n is observed in pulses
with progressive temperature hollowing: 5/4 -> 4/3 -> 3/2 -> 2/1

JPN: 96996

Linear stability analysis
(zero pressure limit)
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EC characteristic time scales
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Outboard radiative blob ®)

@ An outboard radiating blob due to heavy impurities accumulated in the low field side can also
lead to edge cooling and to the destabilization of a 2/1 TM, possibly locking and triggering
the DMV intervention.

JPN: 99154 (Ip=3.0 MA, Bt=2.8T) T pulse
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Synthetic diagnostics from bolometer data (®

@ A "synthetic diagnostics®, based upon bolometer data, is developing to obtain radial profiles of radiation
in a Z-band straddling the median plane, to be analyzed as done for the electron temperature profiles.

JPN: 96501

_— O JPN: 92356
Contour levels (left) and radial profiles (right) of radiation in the Z-band

straddling the median plane to highlight the transition from outboard
blob to core accumulation. A final edge cooling is also present.

W/m:
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Disruption alerts from Te and radiation profiles

@ The possibility of combining information on electron temperature (from ECE radiometry) and
radiation profiles (from bolometer cameras) has been also considered.
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Termination panel (®

@ In the Python Mode Analysis code for the study of MHD activity at JET, a panel dedicated to
Termination has been introduced, providing inter-pulses information [E. Giovannozzi].

JPN: 99948 (Ip = 3.5 MA, Bt = 3.35 T) DT pulse
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Locked modes and disruptions (®

@ A widely adopted empirical criterion to trigger mitigation actions is based on the concept of a
critical magnetic island size required to induce the thermal quench of a disruption.

(MA)
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