IAEA-CN301

Establishment of a National Medical Cyclotron for Sustainability and Self-Reliance in PET Radiopharmaceutical Production for Cancer Imaging, Research and Development in the Philippines



#### caarcilla@pnri.dost.gov.ph

## ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact



## Current Situation in the Philippines

- 2nd killer after heart disease in 110 million population
- High cost of cancer staging, diagnoses and treatment management (₱60,000 – 80,000 [≈ US\$1,500] in one scanning) condemns poor people sick from cancer
- By time of diagnosis, most poor cancer patients are at Stage 4 with virtually no hope of treatment



Slide 1/19

### Top five causes of deaths in the PH



Ischemic heart diseases were still the leading cause of death in 2020

Neoplasms came in second with 62,300 deaths, which is equivalent to 10.8 pecent of deaths

Carlo Arcilla

IAEA-CN301



## Big Problem in Philippines Inequitable Wealth Distribution



IAEA-CN301

Slide 3/19

Carlo Arcilla



Cost of one PET-CT SCAN US\$ 1,500 = 1/2 GDP PER CAPITA!

## 3,298.83 USD (2020)



IAEA-CN301

Slide 4/19 Carlo Arcilla



Many medical doctors don't prescribe PET scans for poor patients

- National health insurance doesn't pay for nuclear medicine diagnostic procedures
- Limited number of medical cycltorons for PET radiopharmaceuticals (only 4 in the country)
- Limited number of PET-CT diagnostic and imaging facilities (only 12 in the country)



#Accelerators2022 23-27 May 2022

# Medical Cyclotrons in the **Philippines**

National Capital Region (Population: 12,877,253)

2 private (SLMC, PHMC)

1 public-private partnership (NKTI)

Central Visayas Region - Cebu City (Population: 922,611)

1 private (CHMC)

1 government (VSMC)

Davao Region – Davao City (Population: 1,632,991)

1 government (planned)







#### IAEA-CN301

Slide 6/19

Carlo Arcilla

## Cyclotron and PET/CT Infrastructure

| HOSPITAL                                                                                      | ΤΥΡΕ    | RADIONUCLIDE                               | MAKE                          | ENERGY   | RADIOCHEMIST |
|-----------------------------------------------------------------------------------------------|---------|--------------------------------------------|-------------------------------|----------|--------------|
| St. Luke's Medical Center QC                                                                  | Private | F18, N13                                   | GE Minitrace                  | 9.6 MeV  | 1            |
| National Kidney Transplant<br>Institute (NKTI) (under Khealth<br>Corporation) (GMP certified) | Public  | F18                                        | GE PET Tracer 880             | 16.5 MeV | 1            |
| Perpetual Help Medical Center<br>(Neo Isotope World)                                          | Private | F18                                        | IBA Cyclone 18/9<br>Cyclotron | 18 MeV   | 1            |
| Chong Hua Hospital                                                                            | Private | Currently installing                       | Sumitomo HM-12S               | 12 MeV   |              |
| Vicente Sotto Medical Center,<br>Cebu                                                         | Public  | Cyclotron bunker<br>currently constructing |                               |          |              |
| Southern Philippines Medical<br>Center, Davao                                                 | Public  | Cyclotron bunker<br>currently constructing |                               |          |              |
| Cardinal Santos Medical Center                                                                | Private | **With PET/CT facility but no Cyclotron    |                               |          |              |
| Angeles University Foundation,<br>Pampanga                                                    | Private | **With PET/CT facility but no Cyclotron    |                               |          |              |

IAEA-CN301

Slide 7/19

Carlo Arcilla



# Clinically used PET radiopharmaceuticals in the Philippines

| RADIOPHARMACEUTICAL                  | PRODUCED BY      |  |
|--------------------------------------|------------------|--|
| • [18F]FDG                           | SLMC, NKTI, PHMC |  |
| • [68Ga]DOTATATE                     | SLMC             |  |
| • [68Ga]PSMA                         | SLMC             |  |
| • [ <sup>13</sup> N] NH <sub>3</sub> | SLMC**           |  |
| • [18F]F-PSMA                        | ΝΚΤΙ             |  |

\*\*Licensed but not routinely produced





Bringing down the cost of PET/CT scans – Government establishment of PET imaging facility under PNRI

- PNRI is initiating the development of a PET imaging facility together with a cyclotron facility. This is in response to the passage of laws pertaining to universal health care, universal health insurance and intensified cancer prevention and treatment laws. The facility is envisioned to be operational in the next 4-5 years
- Main features:
  - 4 PET-CT imaging cameras
  - 16.5 -20 MeV cyclotron with two to four beamlines for different targets
  - Supplementary labs for PET radiopharmaceutical research
  - Facilities for PET and cyclotron training for personnel

Carlo Arcilla



## Gradual Government Funding + Public Private Collaboration

- Building for cyclotron and 4 PET CT and research facilities now being built
- Philippine government funded but will explore asking assistance from IAEA for purchase of cyclotron and PET CT scans and training of staff
- Operation of facility to be Public-Private partnership (to avoid shutdowns when repairs needed because of overbearing laws on purchasing of parts replacement using government funds)





## Funding request through project proposals

- Funding will have to be justified yearly from Office of Budget and Management
- Project targets poor cancer patients helped it gain traction

Carlo Arcilla

• Senior budget official has cancer

Slide 11/19

IAEA-CN301



#Accelerators2022 23-27 May 2022

#### **Program Title:**

INNOVATING NUCLEAR MEDICINE RESEARCH AND SERVICES: Development of Emerging PET Radiopharmaceuticals for Early Cancer Staging and Assessment of Biologic Functions in Cancer Cells

#### **Program Leader/Coordinator:**

CARLO A. ARCILLA, Ph.D. PNRI Director

#### **Components:**

| Project Title                                                                                                                                                                                                             | Duration |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ol> <li>Development of National Capacity in the Production and<br/>Quality Control of PET Radiopharmaceuticals for Cancer<br/>Staging<br/>(Carlo A. Arcilla, Ph.D.)</li> </ol>                                           | 5        |
| <ol> <li>Development of Diagnostic PET Facilities for Health Care<br/>Management and Applications<br/>(Thomas Neil Pascual, MD)</li> </ol>                                                                                | 5        |
| 3. Research Development and Innovations for Emerging<br>PET Radiopharmaceuticals<br>(Joanna Michelle Chua)                                                                                                                | 5        |
| <ul> <li>4. Enhancement of Synergy Among Industries,<br/>Governments, Academe and Innovators for Sustainability<br/>and Resilience Through Collaborations and Technology<br/>Transfer<br/>(Gregory R. Ciocson)</li> </ul> | 5        |





Slide 12/19 Carlo Arcilla

IAEA-CN301

## Strategic Impacts

Increased supply of radiopharmaceuticals

Slide 13/19

**Streamlined** cancer services for poor

National Training Center for Cyclotron **Operations and** Radiopharmaceutical Production

**Opportunities** for Public-Public and **Public-Private** Collaboration



Center of Nuclear Medicine **Research and** Development in Asia



nternational Conference on

ators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

Carlo Arcilla

IAEA-CN301

# PET Radopharmaceutical Facility's medical cyclotron specifications

Carlo Arcilla

| Proton beam energy                    | 16.5 MeV – 20 MeV               |              |                |  |  |
|---------------------------------------|---------------------------------|--------------|----------------|--|--|
| Deuteron beam energy                  | 9 MeV                           |              |                |  |  |
| Proton beam current                   | 100-130 μA (max 65 μA for F-18) |              |                |  |  |
| Deuteron beam current                 | 60 μΑ                           |              |                |  |  |
| Number of beam lines                  | 1                               |              |                |  |  |
| Number of targets                     | 6                               |              |                |  |  |
| Type of targets                       | Liquid                          | Gas          | Solid          |  |  |
| Radionuclides intended to be produced | F-18                            | C-11<br>N-13 | Cu-64<br>Sc-43 |  |  |



#Accelerators2022 23–27 May 2022 IAEA, Vienna, Austria

Slide 14/19

IAEA-CN301



Artist's sketch · Nuclear Medicine Research and Innovation Center

IAEA-CN301

Slide 15/19 Carlo Arcilla





Groundbreaking · Nuclear Medicine Research and Innovation Center · January 31, 2022

IAEA-CN301

Slide 16/19 Carlo Arcilla





Construction work in progress

IAEA-CN301

Slide 17/19

Carlo Arcilla



# Staff involved the establishment of the Cyclotron and PET/CT facility



Adelina Bulos Head, Isotope Techniques Section



Preciosa Corazon Pabroa, PhD Chief, Nuclear Services Division



Dr. Thomas Neil Pascual Science & Technology Fellow III













Isotope Techniques Section Staff





IAEA-CN301

Slide 18/19

Carlo Arcilla

## **Best Practices**



Prospects of Public-Private partnership for sustainable operation



Stakeholders engagement in the development of the project



Solicitation of committed and strong government support

#### BEST PRACTICE

Continued collaboration with IAEA to ensure state-of-the art technical support in cyclotron-produced radiopharmaceuticals



IAEA-CN301

Carlo Arcilla



## Thank you

### Acknowledgement:

TC Regional Project RAS0080 – Promoting Self-Reliance and Sustainability of National Nuclear Institutions

### INTERNATIONAL CONFERENCE ON **ACCELERATORS FOR RESEARCH** AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

