

Ultra-trace analysis of anthropogenic long-lived radionuclides in the environment with AMS

Karin Hain

The VERA team, A. Sakaguchi, A. Yokoyama, M. Wagreich

University of Vienna, Faculty of Physics, Austria University of Tsukuba, Center for Research in Isotopes and Environmental Dynamics, Japan Kanazawa University, Institute of Science and Engineering, Japan University of Vienna, Department of Geology, Austria

(karin.hain@univie.ac.at)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

MIGRATION BEHAVIOUR

Oxidation state

Study migration behaviour in environmental systems at trace level

Radioecology, Nuclear Waste Management, Environmental Sciences (use as tracers)

IAEA-CN301-231 Slide 2/24

Speaker name: Karin Hain

AMS @ VERA

 Routine actinide measurement at VERA

- Sensitivity limit: ²³⁶U/²³⁸U < 10⁻¹²
- Overall detection efficiency: 5-10⁻⁴
- Isotopic spike for normalisation

Detection Limit: ag (10⁻¹⁸g)

International Conference on Accelerators for Research and Sustainable Development

Speaker name: Karin Hain

IAEA-CN301-231

Slide 3/24

Irish Sea: nuclear reprocessing

- Dated Sellafield Sediment core
- IAEA-381: Irish Sea Water (1993)

233
U/ 236 U = 0.13 ± 0.02 %

Slide 4/24

IAEA-CN301-231

Peat bog: global fallout

Core from Black Forest (Germany)

233
U/ 236 U = 1.5 ± 0.2 %

MARKERS FOR THE ANTHROPOCENE

Karlsplatz, Vienna, Wien Museum

Sample mass: \approx 10g (sieved and ground)

Slide 5/24

IAEA-CN301-231

Speaker name: Karin Hain

SIGNALS OF THE ANTHROPOCENE

U ratios for source identification

WWTF ARCHÄOLOGIE

#Accelerators2022 23–27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-231 Slide 6/24

ANALYSIS OF ²³⁷Np

➢ Normalized to internal ²⁴²Pu spike

➢ Ext. Standard with known ²³⁷Np/²⁴²Pu

Lovett et al (1990): **c(Fe³⁺) > 10 mg/L** for quantitative co-precipitation of An(+V)

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231 Slide 7/24

Speaker name: Karin Hain

earch elopment

SPIKE PRODUCTION FOR ²³⁷Np

No experimental data available!

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231 Slide 8/24

A. Sakaguchi, University of Tsukuba

IRRADIATION @ RIKEN

No.	Thickness (mg / cm ²)			
R2 - 9	9.75			
R2 - 12	10.15			
R2 - 5	10.12			
R2 - 6	10.58			

A. Yokoyama, Kanazawa University

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231

Slide 9/24

RESULTS FROM IRRADIATION

> Mass 236 above BG level produced

Only statistical uncertainties included \succ

Slide 10/24 IAEA-CN301-231

Speaker name: Karin Hain

RESULTS FROM IRRADIATION

Speaker name: Karin Hain

Mass 236 above BG level produced

Slide 11/24

Only statistical uncertainties included

IAEA-CN301-231

RESULTS FROM IRRADIATION

- Mass 236 above BG level produced
- Only statistical uncertainties included

Problem: considerable 233 U productionMeasured neutron flux (Au monitor)thermal n flux: $6.5 \cdot 10^5/(scm^2)$ fast n flux: $2 \cdot 10^7/(scm^2)$

IAEA-CN301-231 Slide 12/24

Speaker name: Karin Hain

Np SPIKE CHARACTERISATION

A. Wiederin

Der Wissenschaftsfonds.

Higher Actinides prefer the formation of AnF_4^- (reported in Cornett et al, NIMB, 2015)

ional Conference or erators for Research and Sustainable Development

IAEA-CN301-231 Slide 13/24

Np SPIKE CHARACTERISATION

A. Wiederin

Der Wissenschaftsfonds.

IAEA-CN301-231 Slide 14/24

Speaker name: Karin Hain

Nuclear reprocessing plants

(Nuclear Medicine)

Rh 97 44 m 31 m ⁸ / ₁₆₂₆ 9 ⁺ 21. ⁹ / ₁₆₉ ; ⁹ / ₄₄₂ ;	Rh 98 3.5 m 8.7 m	Rh 99 47.h 16.d *p*0.7 \$*0.7. 7341; 11	Rh 100 4.7 m 20.8 h hy 32; 74 p* 28. b* 1590;	Rh 101 4.4 d 3.3 a 1,507, 1,127.	Rh 102 2.9 s 207 d 475; p+13 631; p+12	Rh 103 56.1 m 100
442. 17 259 879 Ru 96 5.54	7552; p* 3.5 745 745 7652 7652 7652 7652	818: 1588: 1261	Ru 99 12.76	Ru 100 12.60	Ru 101 17.06	Ru 102 31.55
TC 95 60 d 20 h (;) +	9 TC 96 52 m 4.3 d 1y (34) 9" 778: 9" 7778: 900; 9130; 913	TC 97 92.2 d 4.0 · 10 ⁸ s	Tc 98 4.2 · 10 ⁶ a ^{β⁻0.4} ^{γ745:652} _{σ0.9 + ?}	TC 99 6.0 h 211 10 ⁵ a h ¹¹⁴⁷ e ⁻ y ⁻ y ⁻ y ⁻ y ⁻ y ⁻ y ⁻ y ⁻ y	Tc 100 15.8 s β ⁻ 3.4 ⁶ γ 540; 591	Tc 101 14.2 m γ307; 545
Mo 94 9.23	Mo 95 15.90	Mo 96 16.68	Мо 97 9.56 # 2.5 Фл. к. 45-7	Mo 98 24.19	Mo 99 66.0 h β ⁻ 1.2 γ740; 182; 778 m; g	Mo 100 9.67 1.15 • 10 ¹⁹ 26 ⁻ 9 0.19
Nb 93 16,13 a 100 (r 0.05 + o 20	Nb 94 6.28 m 2·10 ⁴ a (y(41) 0 ⁷ 0 ⁷ 0 ⁷ 0 ⁷ 0 ⁷ 0 ⁷ 0 ⁷ 0 ⁷	Nb 95 86.6 h 34.97 d h 238 e ⁻ 10_ y 204_d v<7	Nb 96 23.4 h ^{β⁻ 0.7} γ778: 569: 1091	Nb 97 53 s 74 m 1y 743 y 558	Nb 98 51 m 2.9 s 51 c 29 787; 725; 7787; 7787; 1168 1024	Nb 99 2.6 m 15 s β ^{-3.2} γ 95; 254; γ 95; 254; β ^{-3.1} 2854 γ 138; 1γ 305 7 99

This project

Estimated total deposition: 140 TBq (220 kg)

and Sustainable Development

Slide 15/24 IAEA-CN301-231

Speaker name: Karin Hain

International Conference on Accelerators for Research

IAEA-CN301-231

Slide 16/24

- Several proof-of-principle publications by TIMS, RIMS and AMS
- But hardly any studies on environmental concentrations far away from the contamination sources (100L, ICP-MS)

Rh 97 44 m 31 m β* 2.6 β* 2.1 γ 189; γ 422; 422 842; 947 847;	Rh 98 3.5 m 8.7 m ³⁺ 7 552; p ⁺ 3.5 745 7 552.	Rh 99 4.7 h 16 d 4.7 h 16 d 4 p*0.7 p*0.7; 7.341; 1.1. 618; 7.528; 1261 353; 80	Rh 100 4.7 m 20.8 h 1 y 32; 74 1 1 20.8 h 1 y 32; 74 1 1 20.0 1 y	Rh 101 4.4 d 3.3 a ⁴ 7 307; 545 196; 196; 325	Rh 102 2.9 s 207 d 9 475; 6 ⁴ 13 631; 97 12 697, 975; 17 142; 6 626	Rh 103 56.1 m 100
Ru 96 5.54	Ru 97 2.9 d	Ru 98 1.87	Ru 99 12.76	Ru 100 12.60	Ru 101 17.06	Ru 102 31.55
TC 95 60 d 20 h 4; 3 ⁺	Tc 96 52 m 4.3 d ¹ γ (34) ⁴ σ σ σ ³ ⁴ γ778; γ778; 850; 1200, 813	Tc 97 92.2 d 4.0 · 10 ⁸ =	Tc 98 4.2 · 10 ⁶ a ^{β⁻0.4} 7745; 652 σ 0.9 + 7	Tc 99 6.0 h 21- 10 ⁵ a h ₁ 141 e ⁻ y ₁ 22 y ₁ 22 y ₁ 22 y ₁ 22 y ₁ 22	Tc 100 15.8 s β 3.4 ⁶ γ540; 591	Tc 101 14.2 m ^{β⁻1.3} γ307; 545
Mo 94 9.23	Mo 95 15.90	Mo 96 16.68	Мо 97 9.56 # 2.5 Фа. с. 46-7	Mo 98 24.19	Mo 99 66.0 h β ⁻ 1.2 γ740; 182; 778 m; g	Mo 100 9.67 1.15 · 10 ¹⁹ a 26 ⁻ 9.0.19
Nb 93 16,13 a 100 (r (01) e ^{-0.06}	Nb 94 6.26 m (y(41)) (y(4))	Nb 95 86.6 h 34.97 d h 238 e ⁻ y 204_4 y 76 y 766 y 204_4 y 767 y 767 y 204_4 y 776	Nb 96 23.4 h ^{β⁻ 0.7 γ778: 569: 1091}	Nb 97 53 s 74 m by 743 9 1.3 - , 558	Nb 98 2.9 s 51 m 2.9 s β ⁻ 2.0, 2.9 s γ 787; β ⁻ 4.6 γ 787; γ 787; 1024 1024	Nb 99 2.6 m 15 s γ 98; 254; 2942; β ⁻ 3.1 2054 γ 138; γ 138; λγ 305 7 98

Speaker name: Karin Hain

Der Wissenschaftsfonds.

- Several proof-of-principle publications by TIMS, RIMS and AMS
- But hardly any studies on environmental concentrations far away from the contamination sources (100L, ICP-MS)

Speaker name: Karin Hain

interfering isobar ⁹⁹Ru

no stable isotopes for normalization

Slide 17/24

IAEA-CN301-231

Der Wissenschaftsfonds.

- Several proof-of-principle publications by TIMS, RIMS and AMS
- But hardly any studies on environmental concentrations far away from the contamination sources (100L, ICP-MS)

interfering isobar ⁹⁹Ru

use isotopic spike: ⁹⁷Tc

Produced e.g. via ⁹³Nb(⁷Li,3n)⁹⁷Tc @ 9.5 MV terminal voltage (MLL, Munich)

> International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231 Slid

Slide 18/24

ILIAMS @ VERA

FUF Der Wissenschaftsfonds.

IAEA-CN301-231 Slide 19/24

Speaker name: Karin Hain

International Conference on Accelerators for Research and Sustainable Development

23–27 May 2022 IAEA, Vienna, Austria

Ru SUPPRESSION

Sample with 7-10¹⁴ atoms ⁹⁹Ru added

Slide 20/24

IAEA-CN301-231

Speaker name: Karin Hain

#Accelerators2022 23–27 May 2022 IAEA, Vienna, Austria

Ru SUPPRESSION

Sample with 7-10¹⁴ atoms ⁹⁹Ru added

Sample with 4-10¹⁰ atoms ⁹⁹Tc added

Green laser on (5W transmitted power)

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231 Slide 21/24

Speaker name: Karin Hain

factor

Ombrotrophic peat bog (Austria): surface water (V = 10L)

Green laser on (5W transmitted power)

Slide 22/24 IAEA-CN301-231

M. Martschini, J. Pitters

FUF Der Wissenschaftsfonds.

Helium as buffer gas

	Formation ion source	532 nm E = 2.33 eV	355 nm E = 3.40 eV	479 nm E = 2.79 eV
TcF_5^-		U ≈ 1	U ≈ 150 (?)	1
RuF_5^-	little	U ≈ 10 ⁵	U > 100*	U ≈ 4·10 ⁴
MoF ₅	strong	U ≈ 20	U ≈ 250	U < 2.5
NbF ₅	20 nA	U ≈ 1	U ≈ 1.2	1

* Upper limit: no counts detected

- Normalization on ⁹⁷Tc will be challenging focus on Mo suppression (chemistry, other reactive gases, cooler settings)
- Normalization on Nb adds large uncertainties temporal behaviour of TcF₅⁻ differs from NbF₅⁻
 Nb suppresses formation of TcF₅⁻

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-231 Slide 23/24

Thank you

Acknowledgements

Austrian Science Fund (FWF): P 31614-N28 and I 4803-N

European Union's Horizon 2020 research and innovation programme: grant agreement No 824096

RADIA

INTERNATIONAL CONFERENCE ON **ACCELERATORS FOR RESEARCH** AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

