# MEDAUSTRON

# THE PARTICLE THERAPY FACILITY IN AUSTRIA

#### Mauro T. F. Pivi

on behalf of he Accelerator Beam Physics group

Including slides/content provided by: Dale Prokopovich, Alexander Wastl, Laurids Adler, Florian Kühteubl, Fabio Farinon, Giulio Magrin, Alessio Elia, Claus Schmitzer, Thomas Schreiner, plus many others...



#### **OVERVIEW**

1. MedAustron Facility 2. Particle Therapy Technology 3. Research Overview 4. Recent developments 5. Future projects



21 8 8 8 8 1





#### **TUMOR THERAPY**

### RADIATION: COMPARE PHOTONS TO PARTICLE





**Lower exposure** to radiation of healthy tissue Carbon-ion beam



#### Reduction

of side effects and long-term damages



**Photons:** "Conventional" Radiation Therapy **Protons, Carbon Ions:** Ion Beam Therapy

#### **Carbon Ion Centers Worldwide: 13**

#### (in operation by February 2020)



© MedAustron • Data: PTCOG, February 2020



Ion Therapy Center

### TREATMENT PLANNING - COMPARISON





Several fields, entry and exit dose

PROTONS IMPT



Fewer fields, reduced entry dose, no exit dose

DOSE DIFFERENTIAL

Photons minus Protons





### INDICATIONS TREATED AT MEDAUSTRON

Total: 1,246 Patients 32,000 Single Fractions 28% Central Nervous System 20% Head & Neck **15% Pediatrics** 15% **Re-Irradiation** Sarcoma 10% Skull Base 6% Prostate 4% Gastrointestinal (upper) 2% **Gastrointestinal** (lower) <1% **Gynecological Tumors** <1% **Urogenital Tumors** <1% **Breast/Mamma-Ca** <1%

Values December 2021 • values rounded



### THE FACILITY



© MedAustron

#### **ION SOURCES**





#### LINEAR ACCELERATOR



Ion Therapy Center

© MedAustron

#### MEDAUSTRON SYNCHROTRON





#### HEBT HIGH ENERGY TRANSFER LINE



13

Ion Therapy Center

#### IRRADIATION ROOM AND PATIENT POSITIONING



Ion Therapy Center

### PROTON GANTRY – A ROTATING BEAM LINE

Gantry rotation: **0**÷**180°** (+/-0.1°), Swing diameter: **7.5m**, Total weight: **220 t** 



GANTRY IN HORIZONTAL POSITION



#### **ROTATOR FOR GANTRY**



The MedAustron **Gantry** is first world-wide with a **Rotator** beam line: so that the beam shape/profile at the patient is the same and independent from rotation direction MedAustron

## ALL 4 IRRADIATION ROOMS NOW OPERATIONAL

What particles can be delivered and from what directions?

| Clinical Rooms         |                            |          | Research               |
|------------------------|----------------------------|----------|------------------------|
| Fixed Beam             | Fixed Beams                | Gantry   | Fixed Beam             |
| Horizontal             | Horizontal<br>and Vertical | Rotating | Horizontal             |
| Protons<br>Carbon Ions | Protons<br>Carbon Ions     | Protons  | Protons<br>Carbon Ions |



#### PERFORMANCE IMPROVEMENT – FASTER, MORE EFFICIENT, STREAMLINED TREATMENT

- Improvements to quality, beam intensity and speed of treatment delivery for patients through optimization and research
- The facility needs to be constantly improving to ensure that the best outcomes is available for patients
- Improvement projects
- Helium ions being commissioned for research
- Eye treatment
- Gating (beam on-time follows organs movement)
- 800 patients per-year goal project
- Future improvements for faster and better quality treatments
- Multi-energy per single-spill treatments
- New Diagnostics/Instrumentation + much more...
- Intnl. Collaborations: HITRI+, SIGRUM, SEEIIST
- <u>Carbon</u> gantry and superconducting accelerator



MedAustron<sup>D</sup>

Ion Therapy Center



### **RESEARCH (NCR) AT MEDAUSTRON**

#### O Dedicated room for Research with:

- o p and C beams as used for clinical treatment and more features
- Proton energies up to 800 MeV
- High and Low flux beams
- Large room with two focusing iso-centers
- Dedicated cell, chemical, biology, dosimetry and pre-clinical laboratories

#### • Research areas are divided into programs 8 programs:

- P0 Commissioning and Quality Assurance
- P1 Intrafraction Adaptive Radiation Therapy
- P2 Interfraction Adaptive Radiation Therapy
- P3 Imaging with Ion Beams
- P4 Magnetic Resonance Guided Particle Therapy
- P5 Energy Transfer Mechanisms and Applications in Physics and Biology
- O P6 Pre-Clinical Animal Research
- P7 Accelerator physics

#### NCR research in cooperation with:

The Medical Universities of Vienna and Graz Technical University of Vienna Institute for High Energy Physics (ÖAW) University of Applied Sciences Wiener Neustadt (FH WN)





#### "Slow Extraction Techniques" CERN-MedAustron collaboration





## **THANK YOU!**

www.medaustron.at

GLAU SIGN

### ACKNOWLEDGEMENTS

- Laurids Adler
- Dale Prokopovich
- Nadia Gambino
- Greta Guidoboni
- Florian Kühteubl
- O Christoph Kurfürst
- Clemens Maderböck
- Szymon Myalski
- Fabien Plassard

- Valeria Rizzoglio
- Claus Schmitzer
- Thomas Schreiner
- Ivan Strasik
- Alexander Wastl
- Markus Wolf

& all of the over 200+ people working at MedAustron working together to improve the treatment available to particle therapy patients



### ACCELERATOR AND BEAM TRANSFER LINES





### **PROTON GANTRY**





- The first world-wide gantry with a **Rotator** beam line: with a rotator the beam shape at the patient is independent from rotation direction
- Gantry rotation: 0÷180° (+/-0.1°), Swing diameter: 7.5m, Total weight: 220 t
- First patient just successfully been treated: in May 2022



© Kaestenbauer/Ettl.