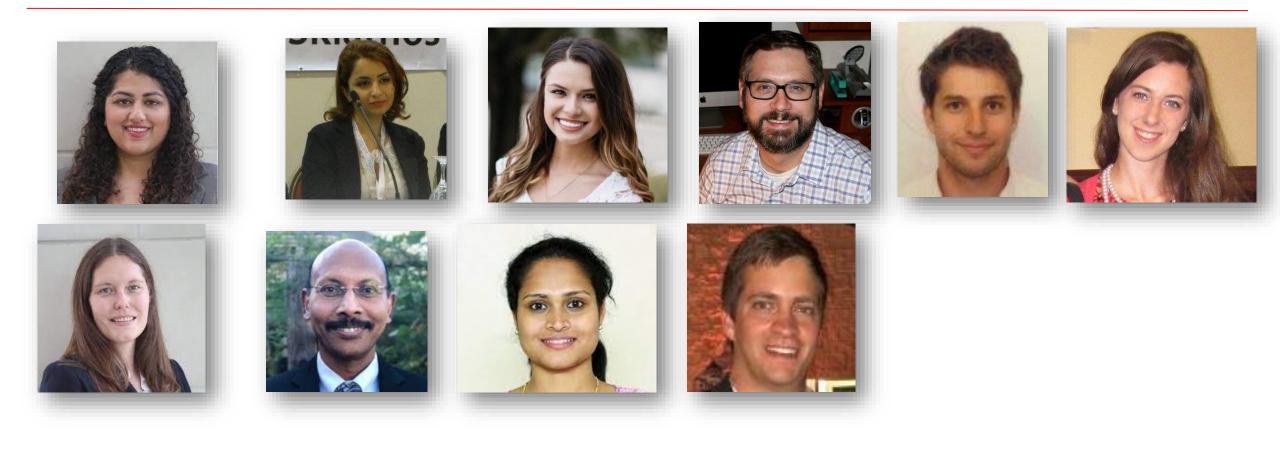
Accelerator Technologies for Food Safety & Food Quality: Response of Microbial Populations to Ionizing Technologies

Suresh D. Pillai Professor of Molecular Microbiology Director, National Center for Electron Beam Research Texas A&M University


eBeam Technology for Cleaning, Healing, Feeding, and Shaping this World and Beyond... an International Atomic Energy Agency Collaborating Centre for Electron Beam Technology

Acknowledgements

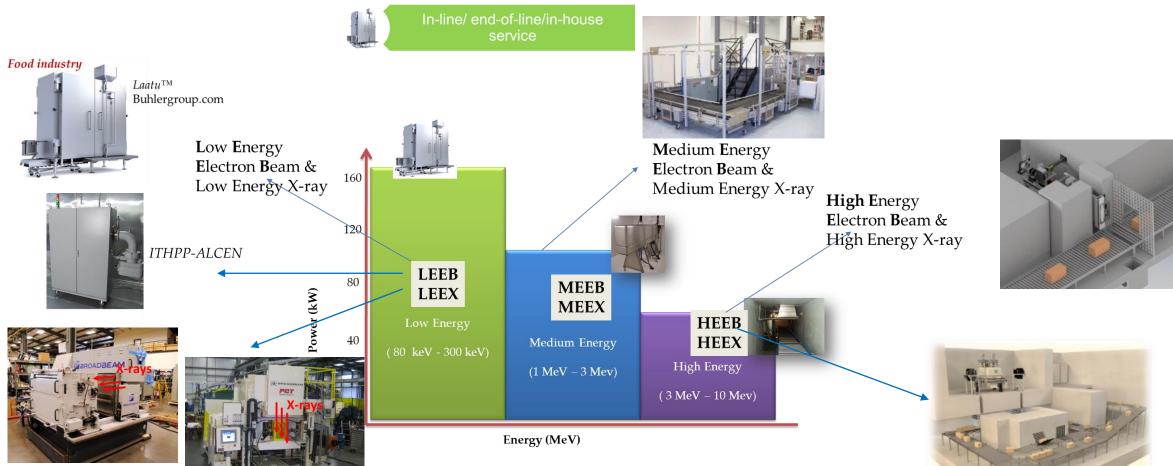
A big thank you!

eBeam and X-ray Technology Applications in the Food Industry

eBeam Technology for Cleaning, Healing, Feeding, and Shaping this World and Beyond...

TEXAS A&M

RESEARCH


Questions that need clear answers

Technologies to Accelerate Adoption

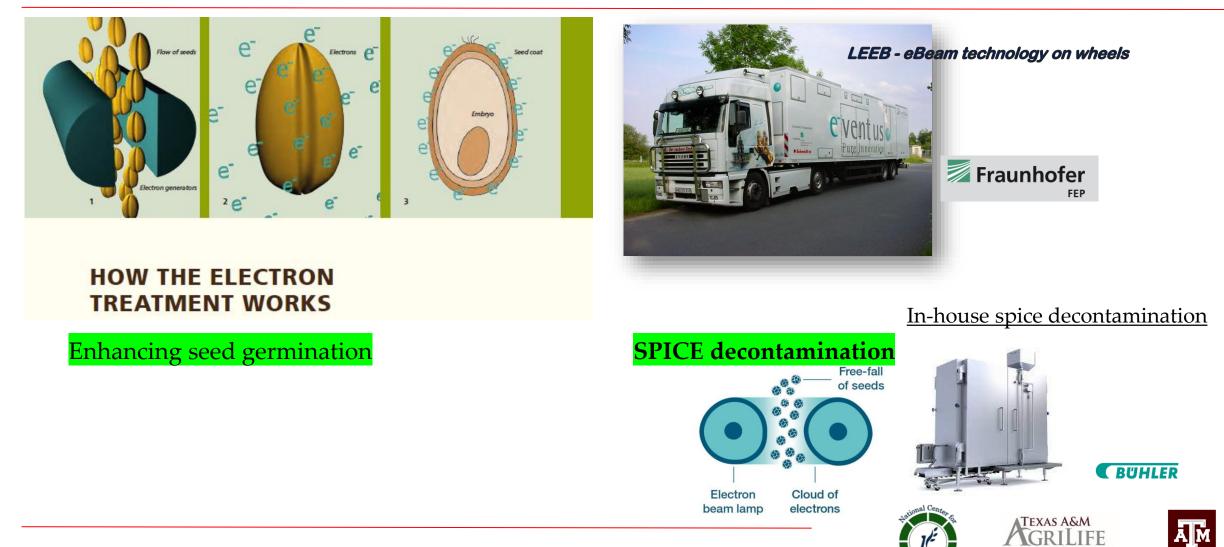
PCT Ebeam Xbeam System

>100 kg/hr

eBeam for aseptic packaging a Green Solution – Tetra Pak in-line eBeam application

Substitutes H_2O_2 , the gold standard for > 30 years

75% less energy than H_2O_2 for the sterilization process

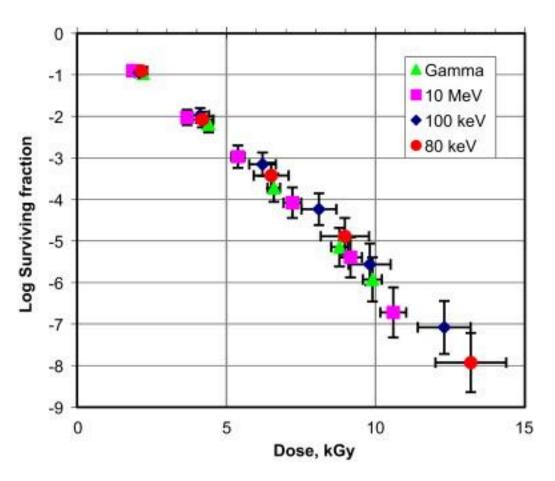

40% lower CO₂ footprint

33% less power draw from the mains

> 100 billion aseptic packages produced and sold around the world

Low Energy Electron Beam Technology Applications

RESEARCH


Questions that Need Clear Answers

- Do eBeam energies have an effect on D-10 values?
- Is 2 kGy from a gamma source the same as 2 kGy from an eBeam or X-ray source?
- Will 2 kGy from a gamma source at ~ 4kGy/hour have the same biological effect of 3 kGy from an eBeam linac at 3kGy/sec or an X-ray source at 0.3 kGy/sec?
- How do we confirm microbial inactivation? Viability testing or molecular analyses?

Some studies show that there is no effect

2.2. Radiation sources

Risø Gamma Cell 1:	
Radiation source:	Cobalt 60
Source strength:	Approx. 1000 Ci $(37 \times 10^{12} \text{ Bq})$
Dose rate:	12 Gy/min
High energy electron accelerat	tor:
Sterigenics, Denmark, Rhodo	
Type:	TT 200
Manufacturer:	IBA
Energy:	10 MeV
Beam current, max:	8 mA
Scanned beam width, max:	80 cm
Low energy electron accelerate	or:
Risø High Dose Reference La	boratory low energy electron
accelerator	
Manufacturer:	AEB
Energy:	80–125 keV
Beam current, max:	10 mA
Fixed beam width, approx:	20 cm

Table 2

Values of slopes of dose-log survival curves and derived D_{10} values for each radiation type together with those found by Tallentire and Khan (1975).

	Slope, kGy ⁻¹	D ₁₀ kGy
Cobalt 60	-0.65	1.54
10 MeV	-0.65	1.54
80 keV	-0.63	1.58
100 keV	-0.61	1.65
Average	- 0.65	1.58
Tallentire and Khan (1975)	- 0.62	1.61

Response of B. pumilus spores to varying ionizing energies and dose rates

Tallentire et al., 2010

Some studies do suggest that there is an effect..

Bacillus/D ₁₀	100 keV	10 MeV			
B. pumilus	1.34kGy	2.12kGy			
B. megaterium	3.46kGy	4.11 kGy			
B. subtilis	1.01kGy	2.05 kGy			
Table 5. Preliminary results of D_{10} values for different					
Bacillus spp spores on Al coupons using 100keV and					
10MeV electron beam irradiation.					

Urgiles et al., 2007

Inactivation kinetics of food-borne pathogens exposed to varying ionizing energies

	D ₁₀ Value ^a (Gy)						
Radiation Source	E. coli (25922)	E. coli (25922)E. coli (#5)Salmonella TyphimuriumSalmonella 4,[5],12:i:-					
10 MeV eBeam	68 ± 4^{B}	$107\pm2^{\mathrm{D}}$	$170\pm16^{\rm E}$	$147 \pm 15^{\text{F}}$			
8.5 MeV eBeam	103 ^A	129 ^{C,D}	163 ^E	163 ^F			
La-140 (gamma)	$95\pm10^{\rm A}$	ND	$178\pm9^{\mathrm{E}}$	ND			
Reactor core (gamma)	75 ± 3^{B}	$138 \pm 15^{\text{C}}$	$174\pm5^{\mathrm{E}}$	$164\pm0.2^{\rm F}$			
5 MeV x-ray	90 ± 7^{A}	151 ^C	ND	ND			
100 keV x-ray	NA	ND	ND	ND			

^a Values are means \pm standard deviation. D₁₀ values with different letters indicate statistically significant (P \leq 0.05) differences. Statistical analyses were performed for each organism against all the different radiation sources. ND, not determined. NA, not applicable.

Hieke, Ph.D dissertation

eBeam energy does not appear to have a significant effect on Inactivation kinetics of *Salmonella* spp.

	D ₁₀ Value ^{a,b} (Gy)				
Radiation Source	Salmonella	Salmonella			
	4,[5],12:i:-	cocktail			
Non-attenuated 10 MeV					
eBeam	$220\pm45^{\mathrm{A}}$	$270\pm46^{\rm A}$			
Attenuated 10 MeV eBeam	$222\pm 62^{\rm A}$	$289\pm20^{\rm A}$			

^a Values are means \pm standard deviation.

^b There was no statistically significant ($P \le 0.05$) difference in D_{10} values between attenuated and non-attenuated conditions.

Attenuated 10 MeV source was 2.97± 0.22 MeV (*most probable electron beam energy* (*Ep*)

Hieke and Pillai, 2015

How is the U.S. food industry using this technology?

How is this technology used commercially by the US food industry

eBeam Technology for Cleaning, Healing, Feeding, and Shaping this World and Beyond...

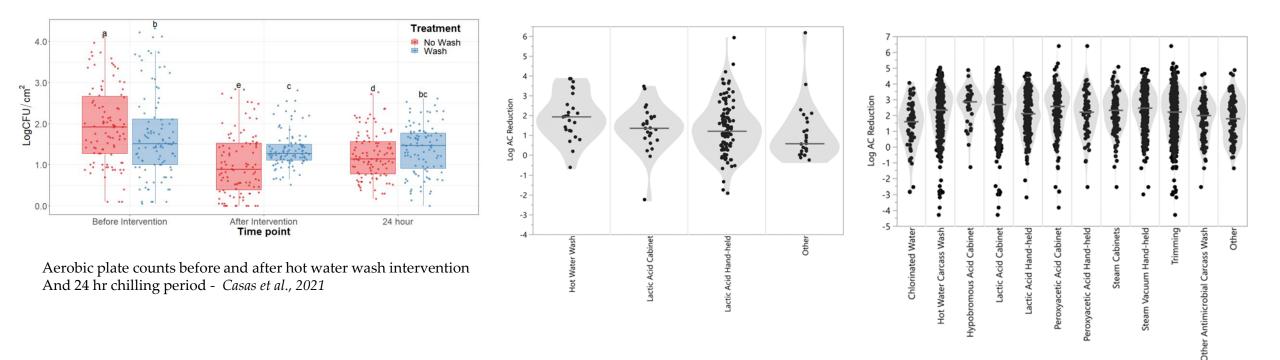
LIFF

CDI

Food product Agency and approval Purpose of irradiation Maximum permitted date dosage (kiloGray) Dry or dehydrated enzyme Control of insects and Food and Drug 10.0 preparations Administration (FDA), micro-organisms June 10, 1985 Control Trichinella spiralis 0.30 to 1.00 Pork carcasses or fresh FDA, July 22, 1985 nonheated processed cuts United States Department of Agriculture (USDA), January 15, 1986 Fresh foods FDA, April 18, 1986 Delay maturation 1.0 Food FDA, April 18, 1986 1.0 Arthropod disinfestation Dry or dehydrated FDA, April 18, 1986 Microbial disinfection 30.0 aromatic vegetable substances FDA, May 2, 1990 Control foodborne 3.0 Fresh, frozen uncooked poultry pathogens USDA, September 21, 1002 Refrigerated and frozen FDA, December 3, 1997 Control foodborne 4.5 (refrigerated) uncooked sheep, cattle, pathogens and extend USDA, December 23, 7.0 (frozen) swine, and goat shelf-life 1999 Fresh shell eggs FDA, July 21, 2000 Reduction of Salmonella 3.0 Control microbial 8.0 Seeds for sprouting FDA, October 30, 2000 pathogens FDA, August 16, 2005 Control Vibrio bacteria and 5.5 Fresh or frozen molluscan shellfish other foodborne pathogens Fresh iceberg lettuce and FDA, August 22, 2008 4.0 Control foodborne fresh spinach pathogens and extend shelf-life

7 log reduction 6 log reduction 5 log reduction 4 log reduction

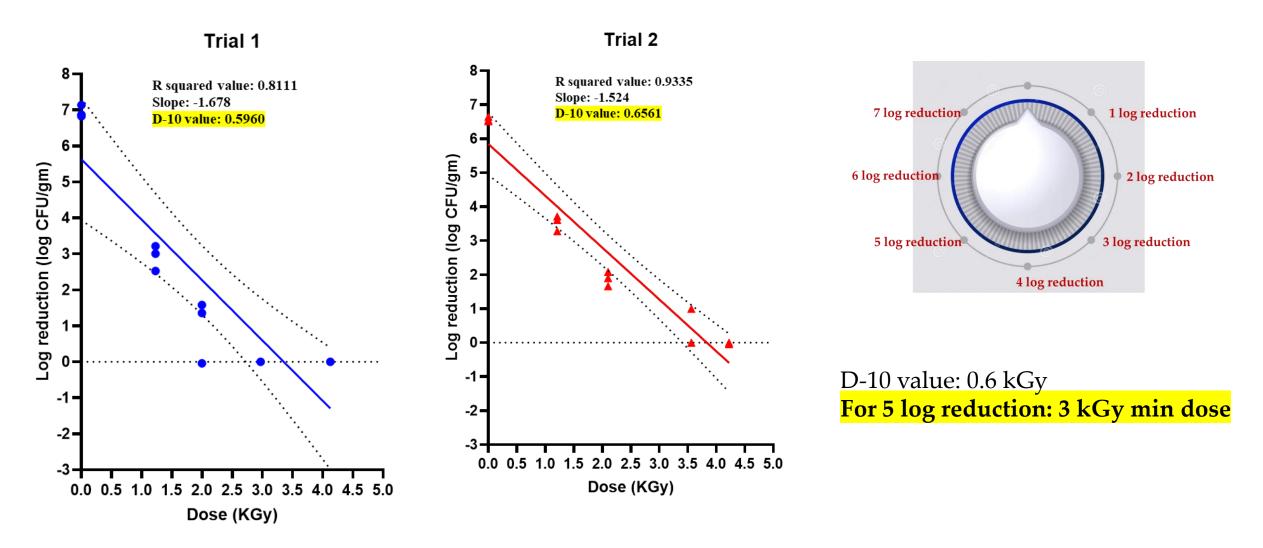
Table 1: Food Products Approved for Irradiation in the United States


Source: GAO presentation of information from 21 C.F.R. 179.26 and Federal Register notices.

Salmonella in peripheral lymph nodes

- Arthur et al., 2008
- *Haneklaus et al., 2012*
- *Gragg et al., 2013*
- Li et al., 2015
- Presence in peripheral lymph nodes protects Salmonella against carcass decontamination sprays and washes
 - Explains greater presence in ground beef relative to beef trim
- Jan Nov 2015 (n= 1200 pork heat and cheek samples)
 - Cheek meat 63% positive for *Salmonella* enterica
 - Head trim 66%
 - *Harvey*, 2017

Carcass sprays have limited effectiveness

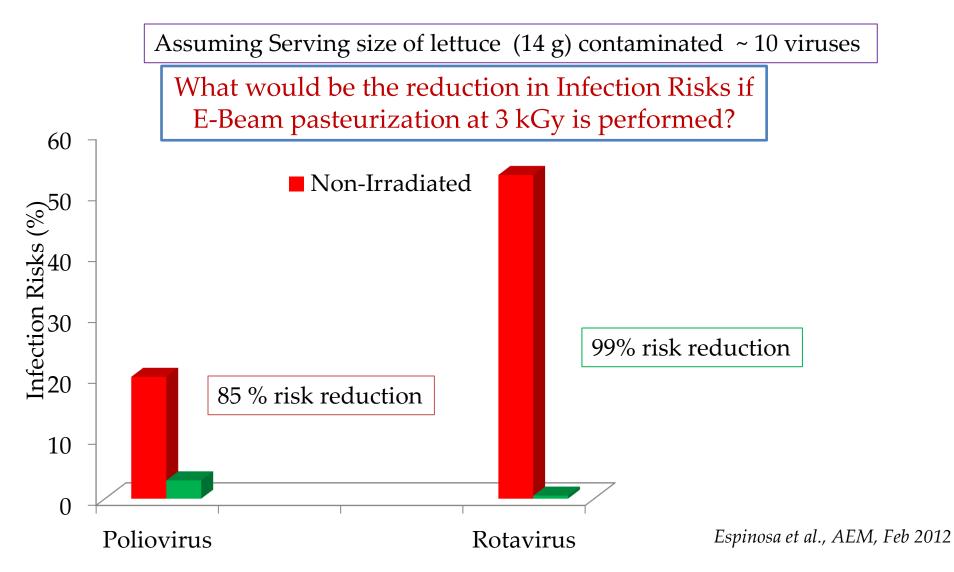


Prevalence of Salmonella in ground beef has ranged between 1.6% and 4.2% between 2009 and 2011 *Bosilevac et al., 2009 FSIS 2011*

Effects of antimicrobial interventions on indicator organisms during beef carcass dressing – Carter et al., 2021

Efficacy of single intervention ~ $0.4 - 1.9 \log$ *aerobic count reduction Efficacy of multihurdle intervention* ~ $1.6 - 2.9 \log$ *aerobic count reduction* Case Study # 2 – What eBeam dose do I need to achieve a 5-log reduction of Salmonella in grindable cheek meat?

eBeam Technology is effective at eliminating *Salmonella* in cheek meat samples



Can eBeam Reduce Infection Risks from Rotavirus and Poliovirus on Lettuce?

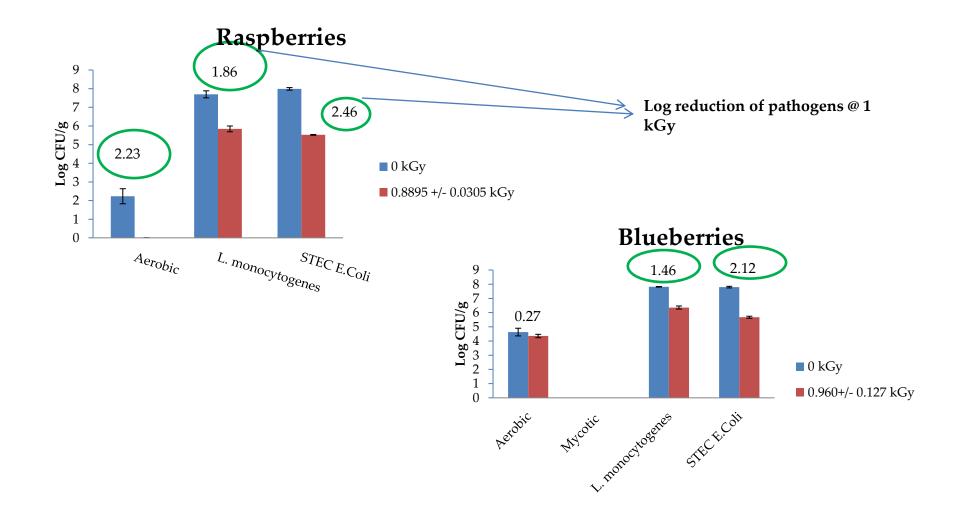
Assuming Serving size of lettuce (14 g) contaminated ~ 10 viruses

What would be the reduction in Infection Risks if eBeam pasteurization at 3 kGy is performed?

eBeam Reduces Infection Risks from Rotavirus and Poliovirus on Lettuce

Can eBeam Reduce Infection Risks from Norovirus and Hepatitis A virus in raw oysters?

Assuming serving size: 12 oysters containing ~ 13.68 g meat per oyster and were contaminated with either 100 or 10 viruses per gram


What would be the reduction in Infection Risks if eBeam pasteurization at 5 kGy is performed? eBeam Reduces Infection Risks from Norovirus and Hepatitis A Viruses in Raw Oysters

Assuming serving size: 12 oysters containing ~ 13.68 g meat per oyster and were contaminated with either 100 or 10 viruses per gram

The reduction in Infection Risks when eBeam pasteurization at 5 kGy is performed

Enteric Virus	Reduction in Infection Risks				
	100 PFU per gram	10 PFU per gram			
Human Norovirus	15% reduction	19% reduction			
Hepatitis A virus	39% reduction	74% reduction			

Pathogen reduction on Berries

eBeam Reduces Infection Risks from Non O157 STEC E.coli on Strawberries

Contamination Level (per serving	Illness Risks			
size)	Without eBeam	with eBeam		
100,000 organisms	2 out of 10 persons	4 out of 100,000		
10,000 organisms	5 out of 100	4 out of 1,000,000		

Significant Reduction in Infection Risks from Raw Milk is eBeam pasteurized at 2.0kGy

Pathogen	Pathogen Concentration in raw milk (CFU/serving ¹)	Infection risks without eBeam pasteurization	Pathogen Concentration in eBeam pasteurized milk ^{2,3} (CFU/serving)	Infection risks after eBeam pasteurization	Mean Risk reduction
C. jejuni	Mean: 3.16×10^8	Mean: 7.80 / 10 persons	< 1	Mean: 4.34E-21	>99.99%
	Median: 2.98 x 10 ⁵	Median: 7.83 / 10 persons		Median: 4.09E-21	
E. coli O157:H7	Mean: 1.13 x 10 ⁸	Mean: 9.90 / 10 persons	<1	Mean: 2.46E-28	>99.99%
	Median: 2.98 x 10 ⁵	Median: 9.90 / 10 persons		Median: 6.49E-31	
L. monocytogenes	Mean: 1.15 x 10 ⁷	Mean: 7.94 / 10 persons	<1	Mean: 1.52E-07	>99.99%
	Median: 1.13 x 10 ⁴	Median: 8.01 / 10 persons		Median: 1.50E-10	

Assumptions:

¹Serving size: triangular distribution between 0mL – 711mL, with 237mL the most likely ²Pasteurization dose: 2.0kGy

³*C. jejuni* 28-log reduction; *E. coli* O157:H7 32-log reduction; *L. monocytogenes* 12-log reduction

How do we confirm microbial inactivation?

Plate counts? Or Molecular Analyses?

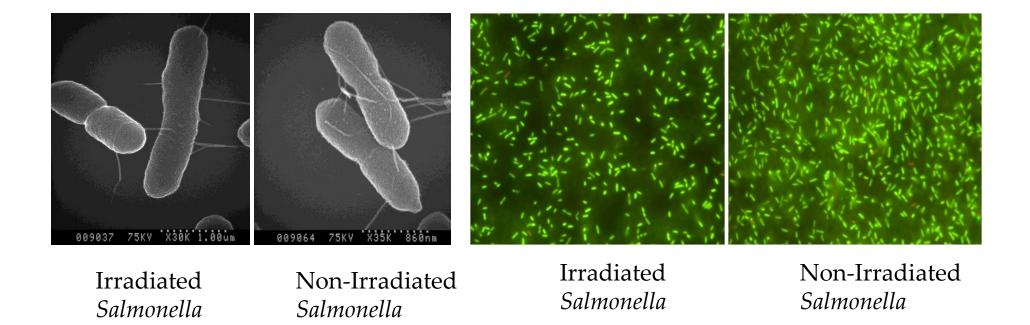
Earth Age : 4.5 Billion Years ago Microbes : 3.8 Billion Years ago Modern humans : ~ 200,000 years ago

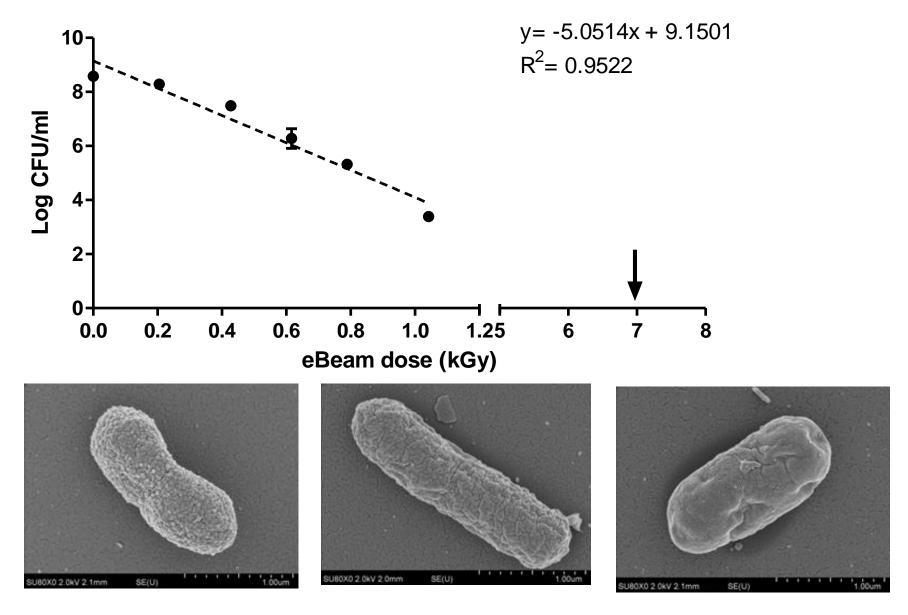
Do you know what these are capable of?

- Survives <u>-273°C to 100°C</u>
- Survives heating to <u>125°C</u> for several minutes
- Survives extreme pressure (7.5 Gpa) for 12 hours
 - pressure at the depth of about 180 km below the surface of the Earth
- Survives for 31 days after exposure to 4 kGy
- Lives for more than 100 years without food or water by assuming a dehydrated hibernation state (cryptobiosis)

World Population approx. 7 billion total

• In soil : approx. 6 billion bacteria <u>per gram</u>!!!




- Intestines: approx. 100 trillion bacteria!!
- In human feces : approx. 100 billion per gram!!

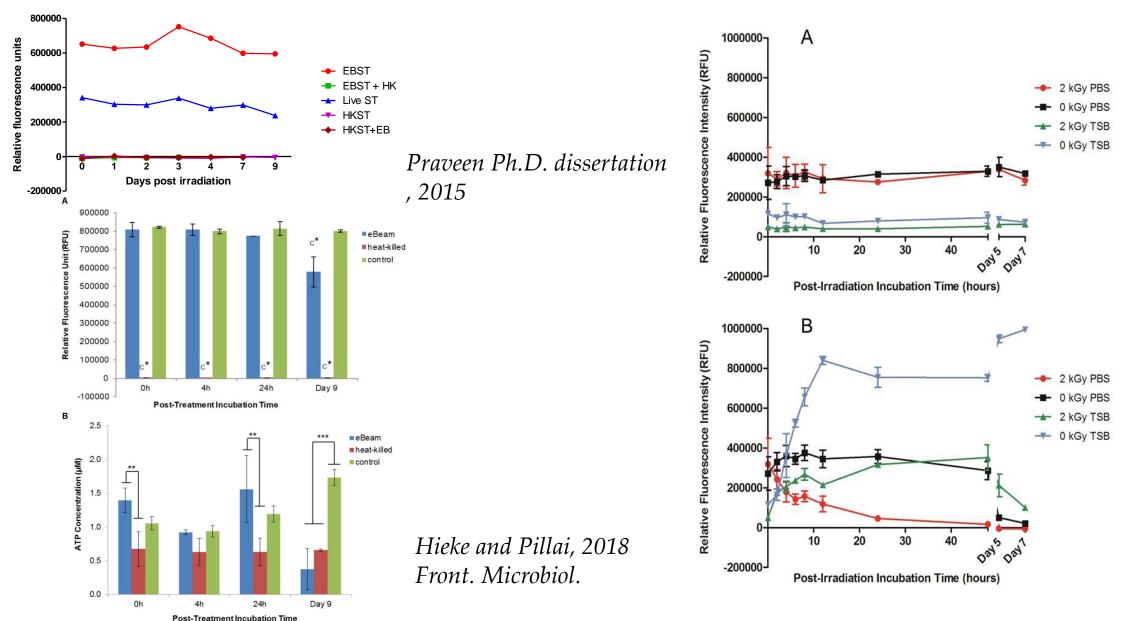
Irradiated Salmonella with intact cell membrane

Electron microscopy

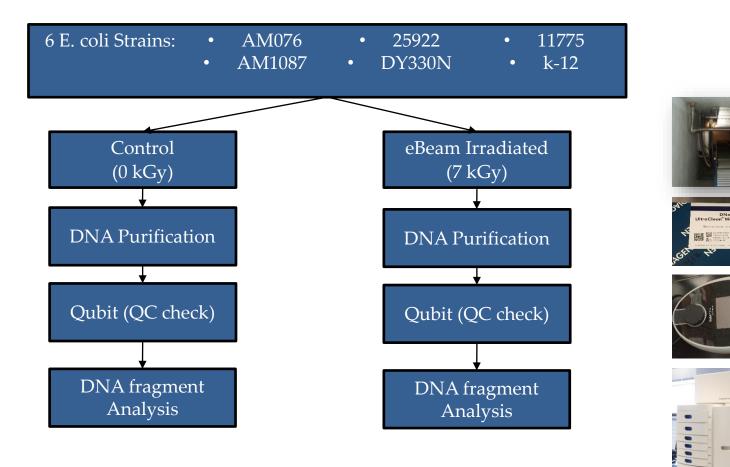
• Membrane integrity

Live

eBeam treated

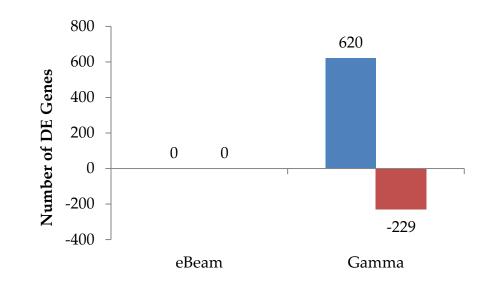

Heat treated

eBeam "killed" Salmonella sp. cells are metabolically active


	arbohy utilizat			Catalase activity
			BST	Live ST ERST
	Live ST	HK ST	EBST	Metabolically Active
Color change	+	-	+	yet Non culturable
Gas production	+	-	-	cells(MAyNC)
Turbidity	+	-	-	

Electron Beam irradiated cells are metabolically active

DNA Fragment Analysis Experimental Design


Fragment Analysis

Strain AM076	0 kGy (Control)	7 kGy (eBeam)	0 kGy (Control)	7 kGy (eBeam)
Α	19071bp (87.7%)	103bp (7.05%), 2304bp (90.9%), >60000bp (1.95%)		
В	19963bp (71.7%)	112bp (4.81%), 2 146bp (94.7%)		
С	496bp (2.38%), 4229bp (6.58%), 19591bp (65.2%), 39372bp (8.96%)	179bp (13.2%), 2732bp (84.8%)		
Strain AM1087	0 kGy (Control)	7 kGy (eBeam)	0 kGy (Control)	7 kGy (eBeam)
Α	88bp (0.39%), 258bp (1.04%), 496bp (8.31%), 2681bp (8.89%), 11998bp (79.7%) , >6000bp(0.41%)	102bp (13.6%), 5081bp (90.6%) , >60000bp (0.21%)		
В	581bp (5.11%), 2768bp (12.4%), 19172bp (61.0%), 35960bp (4.92%)	106bp (1.34%), 4636bp (98.2%)		
С	22145bp (66.7%)	98bp (1.25%), 5709bp (89.3%) , 58984bp (0.31%)	100 U 100 U	607 6087 7080 2€ 6067 609
			2400 2000 1100 	

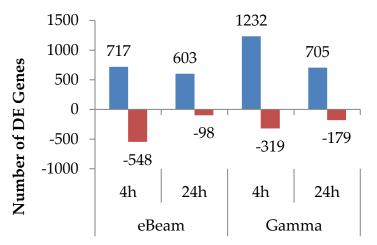
Not all ionizing Irradiations sources the same!

Comparison	Total DE genes	% of total genes	upregulated DE genes (log FCª ≥ 2)	% of total genes	Downregulated DE genes (log FC ≥ -2)	% of total genes	total # DE genes with log FC ≥ 2, -2	% of total genes
EB ^b -PBS-4°C 0h vs 4h	465	8.3	313	5.6	2	0.04	315	5.6
EB-PBS-4°C 0h vs 24h	260	4.6	12	0.21	22	0.39	34	0.6
EB-PBS-4°C 4h vs 24h	98	1.7	0	0	87	1.5	87	1.5
G ^c -PBS-4°C 0h vs 4h	1	0.02	1	0.02	0	0	1	0.02
G-PBS-4°C 0h vs 24h	0	0	0	0	0	0	0	0
G-PBS-4°C 4h vs 24h	0	0	0	0	0	0	0	0
0h EB vs G	1854	33.0	288	5.1	255	4.5	543	9.7
4h-PBS-4°C EB vs G	288	5.1	44	0.78	32	0.57	76	1.4
24h-PBS-4°C EB vs G	1601	28.5	634	11.3	71	1.3	705	12.5
4h-TSB-37°C EB vs G	2091	37.2	419	7.5	20	0.36	439	7.8
24h-TSB-37°C EB vs G	356	6.3	28	0.50	39	0.69	67	1.2
0h C ^d vs EB	0	0	0	0	0	0	0	0
0h C vs G	1673	29.7	620	11.0	229	4.1	849	15.1
4h-TSB-37°C C vs EB	3525	62.7	717	12.7	548	9.7	1265	22.5
24h-TSB-37°C C vs EB	1502	26.7	603	10.7	98	1.7	701	12.5
4h-TSB-37°C C vs G	3253	57.8	1232	21.9	319	5.7	1551	27.6
24h-TSB-37°C C vs G	2055	36.5	705	12.5	179	3.2	884	15.7

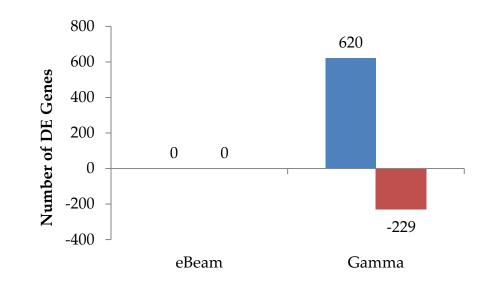
What happens to cells immediately after lethal irradiation?

Overall trends:

- **UP**: Bacterial secretion / virulence / cell membrane
 - Proper protein folding
- **DOWN**: ABC transporters / pyruvate metabolism/ amino acid metabolism / carbohydrate metabolism


Are the gene expression patterns in irradiated cells different from nonirradiated (control) cells when incubated under growth conditions?

eBeam


- UP:
 - 4h: RNA binding, purine and pyrimidine metabolism, (ribo)nucleotide binding, DNA repair/SOS response, and RNA processing, membrane functions, etc.
 - 24h: ABC transporters, SOS response/DNA repair, membrane functions, cellular metabolism, etc.
- DOWN:
 - **4h**: TCA cycle, oxidative phosphorylation, membrane functions, etc.
 - **24h**: TCA cycle, arginine biosynthesis, pyruvate metabolism

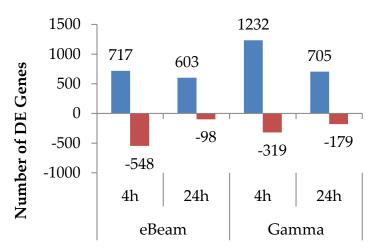
Gamma

- UP:
 - 4h: RNA binding, membrane transport, nucleotide, etc. binding, DNA repair/SOS response, and RNA processing, etc.
 - 24h: ABC transporters, SOS response/DNA repair, membrane functions, etc.
- DOWN:
 - **4h**: TCA cycle, oxidative phosphorylation, metal binding, etc.
 - **24h**: oxidative phosphorylation, pyruvate metabolism, glycolysis, etc.

What happens to cells immediately after lethal irradiation?

Overall trends:

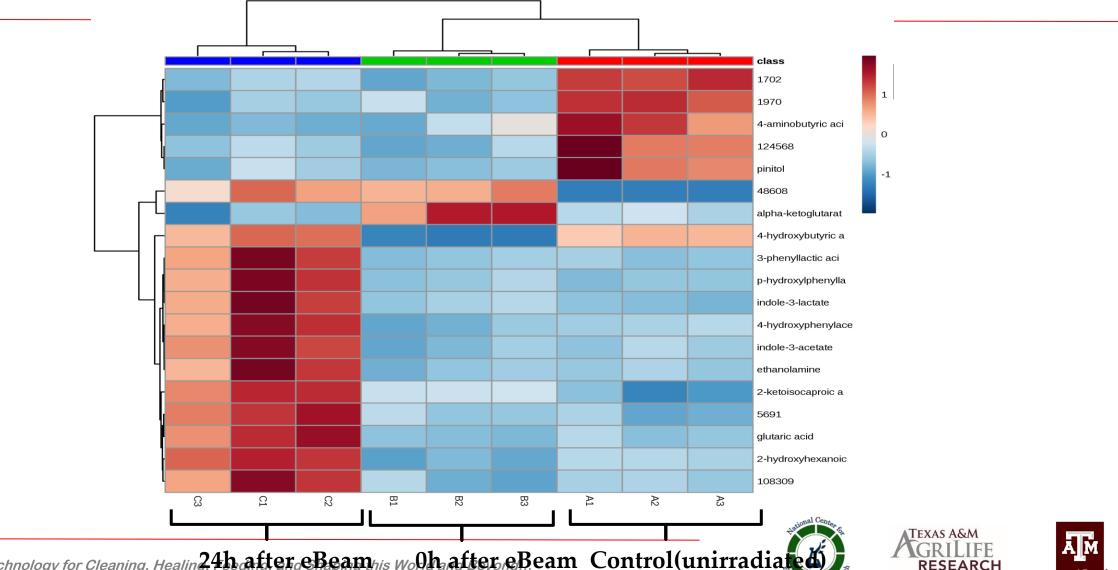
- UP: Bacterial secretion / virulence / cell membrane
 - Proper protein folding
- DOWN: ABC transporters / pyruvate metabolism/ amino acid metabolism / carbohydrate metabolism

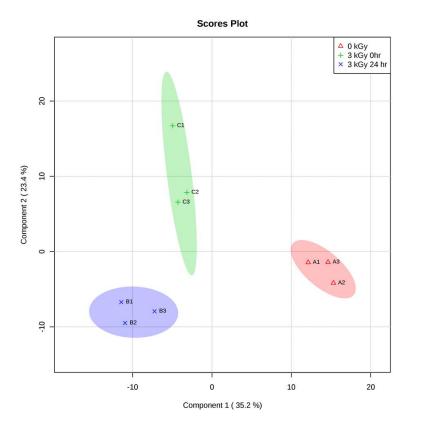

Are the gene expression patterns in irradiated cells different from nonirradiated (control) cells when incubated under growth conditions?

eBeam

- UP:
 - 4h: RNA binding, purine and pyrimidine metabolism, (ribo)nucleotide binding, DNA repair/SOS response, and RNA processing, membrane functions, etc.
 - 24h: ABC transporters, SOS response/DNA repair, membrane functions, cellular metabolism, etc.
- DOWN:
 - **4h**: TCA cycle, oxidative phosphorylation, membrane functions, etc.
 - **24h**: TCA cycle, arginine biosynthesis, pyruvate metabolism

Gamma


- UP:
 - 4h: RNA binding, membrane transport, nucleotide, etc. binding, DNA repair/SOS response, and RNA processing, etc.
 - **24h**: ABC transporters, SOS response/DNA repair, membrane functions, etc.
- DOWN:
 - **4h**: TCA cycle, oxidative phosphorylation, metal binding, etc.
 - **24h**: oxidative phosphorylation, pyruvate metabolism, glycolysis, etc.



Different temporal intervals after eBeam treatment induce different metabolomic responses in *E.coli* O26:H11 in PBS

eBeam Technology for Cleaning, Healing, 4h.after.eBeamhis WoOhafter.eBeam Control(unirradiated)

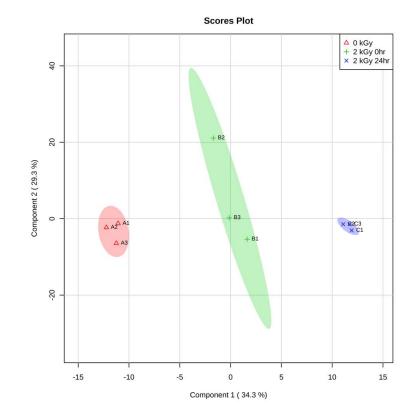


Figure 5. Partial Least Squares-Discriminant Analysis (PLS-DA) scores plot showing differences between the unirradiated cells (0 kGy), irradiated (3 kGy 0 hr), and 24 hour post irradiation (3 kGy 24hr) *E. coli* O26:H11

Figure 6. Partial Least Squares-Discriminant Analysis (PLS-DA) scores plot showing differences between the unirradiated cells (0 kGy), irradiated (2 kGy 0 hr), and 24 hour post irradiation (2 kGy 24hr) *S*. Typhimurium

Research Needs

- Deeper understanding of microbial responses to
 - Varying eBeam energies
 - Varying X-ray energies
 - Varying eBeam dose rates
 - Varying X-ray dose rates
- Need to utilize a variety of conventional and molecular analyses to better understand microbial responses
- Applications of Ionizing technology will grow once we have a better understanding of how microbes respond

ĀM

<mark>Suresh Pillai</mark>

TEXAS A&M

suresh.pillai@ag.tamu.edu

http://ebeam-tamu.org