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Abstract 
 

A brief overview of ion beam analysis methods and procedures in studies of materials exposed to fusion plasmas in controlled 
fusion devices with magnetic confinement is presented. The role of accelerator techniques in the examination and testing of 
materials for fusion applications is emphasised. Quantitative results are based on robust nuclear data sets, i.e. stopping powers 
and reaction cross-sections. Therefore, the work has three major strands: (i) assessment of fuel inventory and modification of 
wall materials by erosion and deposition processes; (ii) equipment development to perform cutting-edge research; (iii) 
determination of nuclear data for selected ion- target combinations. Underlying physics, advantages and limitations of methods 
are addressed. A note is also given on research facilities with capabilities of handling radioactive and beryllium-contaminated 
materials. 

1. INTRODUCTION 

Energy research driven by the quest for effective sources and means of electricity production is crucial for 
sustainable development. Despite distinct progress in energy-saving technologies and increasing number of 
installations based on fossil-free sources, the demand for electricity generation is ever growing to ensure 
functioning of transport, lighting, tele-communication and all branches of industry which require stable high-
power supply. Simultaneously strong emphasis is on the safe and environmentally sound means of energy 
generation, while the production volume may be limited by the access to natural resources, currently available 
technologies, climate and, also by political situation. 

Development of future technologies like Generation IV nuclear reactors and controlled thermonuclear 
fusion has a long history. In both cases, integrated efforts in science and technology are directed towards the 
construction and operation of reactor-class facilities. Controlled fusion is a multidisciplinary field encompassing 
plasma and ion physics, remote handling (RH) and radiofrequency (RF) technologies, nuclear physics and 
chemistry, demanding civil engineering, radiation protection and countless aspects of materials science and 
engineering: from the composition and structure of concrete for a base of a reactor containment to the detailed 
characterisation of the plasma-facing wall: plasma-facing materials (PFM) and components (PFC); both 
abbreviated jointly in the following as PFMC. The surface state of the latter class of materials is studied mainly 
by accelerator-based methods commonly called ion beam analysis (IBA). 

In the interdisciplinary field of fusion research, the role of particle accelerators is at least five-fold: (i) ion 
beam analysis (IBA) of materials retrieved from vacuum vessels of controlled fusion devices; (iii) ion-induced 
simulation of neutron radiation effects in surfaces of solids; (iii) provision of nuclear data for ion-material 
interactions; (iv) ion-induced neutron generation for the material irradiation facility; (v) high current units in the 
neutral beam injection system for plasma (deuterium and tritium: D and T) heating. The first three aspects will be 
presented in the following sections with a focus on the role of accelerator techniques in the examination and 
testing of materials for fusion applications. Quantitative results can only be obtained using highly advanced 
laboratory equipment and combined with robust sets of nuclear data, i.e., stopping powers and reaction cross- 
sections. Therefore, the work has three essential strands: (a) assessment of fuel inventory and modification of 
PFMC composition by erosion and deposition processes; (b) equipment development to perform cutting-edge 
research; (c) determination of nuclear data for selected ion-target combinations. 
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2. CONTROLLED FUSION AND PLASMA-WALL INTERACTIONS: IMPACT ON MATERIALS 

The goal of controlled thermonuclear fusion is to harness energy that powers stars: reactions of light nuclei 
characterised by Q values of several MeV and high reaction rates: 

D + D  T (1.01 MeV) + H (3.03 MeV)  (1a) 

D + D  3He (0.82 MeV) + n (2.45 MeV)  (1b)  

D + T  4He (3.52 MeV) + n (14.06 MeV)  (2)  

D + 3He  4He (3.67 MeV) + H (14.69 MeV) (3) 

the branching ratio of Reactions 1a and 1b is around one. Deuterium fuel is used in most present-day devices, but 
the Q value (17.58 MeV) and the cross-section of the D-T process [1,2], favors that mix of hydrogen isotopes as a 
fuel for a reactor in a future power station. Reaction 3 has a significantly lower cross-section than Reaction 2 and, 
currently cannot be considered because of a very limited availability of 3He. 

Two major schemes of fusing nuclei have been developed. Inertial confinement fusion (ICF) uses high 
power photon (laser) [3] or ion beams [4] focused on a small (~1 mm in diameter) D-T containing pellet placed 
in a vacuum chamber of a few meters in diameter. Magnetic confinement fusion (MCF) based on plasmas 
generated and maintained by magnetic fields of a few T in toroidal systems [1,5]. The latter scheme exploits two 
reactor concepts: tokamaks [1,6] and stellarators [7]. In either case, both ICF and MCF, under terrestrial conditions 
the fusion plasma must be surrounded by walls of a vacuum vessel and, the energy released must then be absorbed 
by wall structures: 20% related to 4He (α particles) by PFMC [8], while the neutron energy (80% of the total) is 
to be transferred to a 6Li-enriched blanket where the conversion to heat and tritium production will occur [9,10]. 
The energy confinement time (τE) of particles of (up to 1.0-1.5 s) is shorter than the plasma discharge time. 

Consequently, particles escape the plasma and impinge on the wall. These are electrons, ions at different 
ionisation states and charge exchange neutrals (CXN). In addition, there are neutrons generated in fusion reactions 
as well as electromagnetic radiation with a broad spectrum from RF down to hard gamma and X-rays. They are 
decisive for what is called plasma-wall interactions (PWI) which involve a huge range of processes: physical 
sputtering, chemical erosion, reflection, implantation, gas retention, desorption, melting, boiling, splashing, 
arcing, cracking, ionisation, recombination, compound formation, activation and consequential transmutation 
[8,11-13]. All of them are dynamic arising from atomic, molecular and nuclear physics and chemistry. 

A scheme of interactions is shown in Figure 1. Eroded species are immediately ionised and travel along 
the magnetic field lines. Eventually, if not pumped out, the migrating species are re-deposited in a close or distant 
location with respect to the place of origin. Re-deposition involves atoms of different elements originally eroded 
from the wall. It is a simultaneous co-deposition in which also fuel atoms are included. As a result, mixed material 
layers are formed. The composition and other properties of such deposition zones significantly differ from those 
of the original substrates. Thermo-mechanical incompatibility between the substrate and co-deposit may lead to 
flaking and spalling-off of the layer thus forming dust which constitute a major operational issue if large amounts 
of dust are formed and, if such particles contain considerable fraction (a few atomic %) of fuel atoms, especially 
radioactive tritium or neutron- activation products. 

In short, PWI comprises all processes of energy and mass exchange between the plasma and the 
surrounding surfaces. As a result, the plasma and the wall are modified with serious consequences for reactor 
operation. The plasma gets contaminated and loses energy, while properties of PFMC and some crucial tools for 
plasma diagnosis (mirrors and windows) are changed. This has an impact on the material lifetime and fuel 
inventory thus for the reactor safety. However, plasma-wall interactions are unavoidable but also necessary. The 
wall provides vacuum conditions indispensable for operation, removes heat and – only under D-T reactor 
conditions - ensures final thermalization of helium ash to enable its pump out and, absorption of energetic neutrons 
in the blanket for tritium productions and power generation. 

In-vessel materials must be, in the first place, compatible with vacuum and strong magnetic fields, while 
the list of requirements for PFC candidates comprises in addition: high thermal conductivity (λ), i.e. over                          
150 m-1 K-1, resilience to thermal shocks, low erosion yield by plasma species, low sorption of hydrogen isotopes 
to limit fuel inventory, high melting (Tm) and boiling (Tb) points, low-Z to minimise plasma energy losses by 
impurities, low erosion rate, low affinity to fuel and to oxygen impurities towards the formation of volatile 
products, affinity to oxygen impurities towards their gettering to form solid oxides, low neutron-induced 
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activation. None of the known substances has properties fulfilling such requirements especially that some of them 
are contradictory. Therefore, the material selection is based on the approach that properties should change as little 
as possible under plasma impact. 

 

FIG. 1. Plasma-wall interactions: schematic illustration of erosion-deposition processes. 
 

 The major materials of interest for PFC are beryllium (Be), carbon (C) in the form graphite or carbon fibre 
composites (CFC), and tungsten (W). In addition, molybdenum (Mo) is important as material for so-called first 
mirrors, i.e., plasma-facing materials for optical diagnostics. Crucial advantages and drawbacks of respective wall 
materials are compiled in Table 1, while very detailed characteristic can be found in [8]. Graphite and several 
types of CFC have been used in toroidal devices since seventies of the 20th century because of their excellent 
power handling capabilities. Issues related to the erosion rates and the formation of fuel-rich co-deposits were 
known, but their dramatic seriousness was recognised after full D-T campaigns in TFTR [14,15] and JET [16-21] 
operated with carbon walls: nearly 30% of the injected tritium was retained in the vessel, especially in the remote 
areas of the divertor, i.e., places shadowed from the direct plasma line-of-sight. Such locations are very difficult 
to reach by any cleaning method [18,20,22]. No efficient means of fuel removal have been developed and the use 
of carbon in a D-T fusion reactor had to be reconsidered [22-27]. A large scale-test with all-metal walls was 
decided at the largest tokamak in the world: the Joint European Torus (JET) [28-30]. Carbon PFC were removed 
and replaced by solid Be limiters and Be coatings on the main chamber wall [31,32], while W components (bulk 
metal and coatings on CFC tiles) were installed in the divertor [32-34]. The operation of JET with the ITER-like 
wall (JET-ILW) started in 2011 and, it was clearly shown that the elimination of carbon sources resulted in a 
significant decrease of fuel retention [35-42] and dust generation [43-48]. In a consequence, the ITER 
Organisation decided to abandon carbon components in the divertor and prepare for operation with Be panels in 
the main chamber and tungsten in the divertor [49]. 

 
TABLE 1. Key properties of C and metals as wall materials and diagnostic components. 

Element Advantages Drawbacks/Limitations Remarks 

C 

Low-Z. Resilience to 
thermal shocks and no 

melting λ of some CFC 
> 300 W m-1K-1. 

Chemical erosion by fuel 
atoms, CxHy formation, 

high erosion rate and fuel 
inventory in co-deposits. 

PFMC in most tokamaks                     
[8,14- 21,27,50-55]  

and stellarators [56-58]  
because of excellent power handling 

capabilities. 

Be 
Low-Z,                                                 

no chemical erosion 
Low Tm and  

high sputter yield. 

Used in JET-ILW in the main       
chamber wall [29,31,59];                                                     

the same decided for ITER wall [49]. 

W 
High Tm  

and low sputter yield  
by fuel 

High-Z, risk for plasma 
contamination and 

disruptions. 
Activation and 
transmutation. 

ASDEX Upgrade wall and divertor 
[60-61].                                                           

JET-ILW divertor [29,32-34,62];                                                  
the same decided for ITER divertor 

[49]. 

Mo 
High Tm and low sputter 

yield by CXN 
High activation. Tested candidate for first mirrors in 

ITER diagnostic systems [63-67] 
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The major research objectives are to determine: (i) the lifetime of PFMC, (ii) in-vessel fuel accumulation, 
i.e., to obtain quantitative mapping of the distribution of D and T, (iii) quantity and properties of dust with 
particular emphasis on the identification of sources, generation pathways and fuel content, (iv) plasma impact on 
diagnostic components which are crucial for plasma characterisation and machine protection. All of them are 
decisive for reactor economy and safety. As such, these are key points in the licensing process. Conditio sine qua 
non for conclusive studies is the access to materials (specimens from diverse locations: wall tiles, probes, dust) 
retrieved from the vacuum vessel after experimental campaigns. Research requires a huge variety of material 
characterisation methods which directly implies the access to laboratories with relevant apparatus, competent 
research teams and – in many cases – capabilities and certificates for handling radioactive materials: T- 
contaminated and activated. 

3. ANALYSIS METHODS AND INSTRUMENTATION 

3.1 Challenges and Solutions Analysis: Needs and Methods 
 

Over the years, more than fifty different material characterisation techniques have been used in the PFMC 
research: ion, electron, neutron and optical spectroscopies, methods based on probing solids with magnetic field, 
sound waves, mechanical force or thermal means applying either a steady temperature rise or shocks by flash 
heating. The variety of probing (‘signal in’) and detection means (‘signal out’), their broad energy spectrum and 
a range of physical processes involved in the interactions create a huge number of “signal in – signal out” 
combinations, and – by this – research opportunities. Nearly every combination may actually be applied in a 
certain area of material characterization. However, only most efficient, methods for analyses of PFMC are 
mentioned in the following, i.e., techniques capable of sensitive and selective quantitative determination of the 
content and distribution (in-depth and lateral) of a wide range of elements and, in many cases, their particular 
isotopes present in the examined materials. Capabilities for mapping surface species on large areas on the tiles 
(e.g., 10x20 cm) are also required in many cases. Compositional analyses must cover a broad range of species 
which constitute wall and diagnostic components, fusion fuel and gases injected for auxiliary plasma heating, 
plasma edge cooling, disruption mitigation, wall conditioning or as markers (tracers) in material migration studies. 
As a result, the list extends from H, D, T, 3He, 4He and other noble gases (Ne – Xe), isotopes of Li, Be, B, C, N, 
O, F to heavier species such as Al, Si to Cr, Fe, Ni and then to W, Re, even Au is to be taken into account. The 
role and origin of respective species in the reactor is addressed in Table 2 in which also the information on relevant 
analysis methods is conveyed. 

The requirement for lateral mapping and depth profiling of such diverse compositions are met by IBA 
methods. Their detailed description with physics basis can be found in [68,69], while the role in PFMC analysis 
has been addressed in overview articles [70-72]. IBA is based on the irradiation of a solid target with an ion beam 
and then detection and analysis of energy and/or mass spectra of signals emitted from the surface: reflected 
primary ions, products of nuclear reactions, recoiled atoms, photons (from visible to X and gamma rays), sputtered 
species such as secondary ions (monoatomic and molecular) and neutrals. Dependent on the ion (type, energy) – 
signal combination there is a number of methods governed by different underlying physical processes. 

• Rutherford Backscattering Spectrometry (RBS) mainly with 4He+ in the 1.5 – 3 MeV energy range. 
• Non-Rutherford Enhanced Proton Scattering (EPS) with H+ in the 0.5 – 2.5 MeV range. 
• Nuclear Reaction Analysis (NRA) – a huge variety of analytical capabilities using low-Z ion beams: 

mainly 3He+ (0.6 – 6 MeV) and H+, but also D+, 12C, 15N and 16O ions. Respective nuclear reactions are 
in Table 2. 

• Particle Induced X-ray Emission (PIXE) and/or Gamma Emission (PIGE) using a primary 1.5 – 4 MeV 
beams of H+, 3He+, 4He+. 

• Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) with 4He+ or the high ion version   
(ToF-HIERDA) using for instance multiply charged ion beams of Cn+, Sin+, Brn+ or In+ beams. Depth 
profiling down to 700 nm. 

• Accelerator Mass Spectrometry (AMS) in trace analysis of T, 10B, 14C. 
• Medium Energy Ion Scattering (MEIS) using a 100 – 400 keV 4He+ beam. 
• Secondary Ion Mass Spectrometry (SIMS) with primary beams of Ar+, Cs+ or O- of a few keV. The 

method is sensitive but the quantification in complex mixed-material co-deposits is difficult. 
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TABLE 2. Species to be analysed/determined and their role in a reactor. 

Species Origin and role                 
in a reactor IBA Method 

Reaction 
(of practical use)* 

Remarks and references 

H Wall cleaning - 
conditioning gas NRA, ERDA 1H(15N,4He)12C 

H is always present in vacuum 
systems; information depth 

below 1 µm; strong detrapping 
by the 15N beam. 

D Fuel NRA, ERDA, EPS 2D(3He,1H)4He 

NRA is the main technique in D 
analysis [70-80].                                         

Depth profiling in C-H layers 
to over 30 µm at 6 MeV [73] 

T Fuel NRA, ERDA, AMS 
3T(12C,4He)11B 
3T (12C, 1H)14C 

3T (D,4He)n 

Use of IBA is limited. Low 
sensitivity of 12C-3T reactions 
12C-3T reactions tried on JET 

materials [81], while the 2D -3T 
was used on TFTR tiles [82]. 
AMS in trace analysis [83]. 

3He Minority gas for 
ICRF heating ERDA  [84] 

4He 
Ash of D-T reaction; 

Wall cleaning - 
conditioning gas 

ERDA  [84] 

6Li, 7Li Li-beam diagnostic, 
wall coatings NRA, ERDA, PIGE 7Li(1H,nγ)8Be  

9Be Wall material NRA, ERDA 
9Be(3He,1H)11B 
9Be(2D,1H)10Be 
9Be(2D,4He)7Li 

[20,71,72,75,77,85] 

10Be Be migration   
marker 

AMS  Marker n-activated 9Be tile [86] 

10B and 
11B 

Wall conditioning  
by low plasma in  
B2H6, B(CH3)3 or 
evaporation from 

B10H14 

NRA, ERDA 
11B(1H,4He)8Be 
11B(3He,1H)13C 

Analysis of PFMC from 
boronised machines [87-91] 

12C Wall material NRA, EPS, ERDA 
12C(3He,1H)14N 
12C(2D,1H)13C 
12C(1H,1H)12C 

[18,70-72,77,78,92] 
12C(2D,1H)13C for C analysis                

on Be targets [85] 

13C Tracer in C 
migration studies NRA, EPS, ERDA 

13C(3He,1H)15N 
13C(1H,1H)13C [93-96] 

14N Edge cooling NRA, ERDA 
14N(2D,1H)15N 

14N(2D,4He)12C [85,93,97,98] 

15N Tracer NRA, ERDA 15N(1H,4He γ)12C [96,98-100] 

16O Major impurity RBS, EPS, NRA,  
ERDA 

16O(2D,1H)17O 
16O(1H,1H)16O [93] 

18O 
Tracer for in- 

vessel oxidation 
studies 

NRA, ERDA 18O(1H,4He)15N [65,78] 

*Only reactions of practical use are listed, i.e. reactions with the detection limit of minimum 5x1014 cm-2. 



 IAEA-CN-301 / 213 
 

 
 

 
TABLE 2. (cont’d). 

Species 
Origin and role                 

in a reactor IBA Method Reaction 
(of practical use)* 

Remarks and references 

20Ne Edge cooling agent ERDA, RBS  [84,97] 

21Ne, 
22Ne Considered as tracers ERDA, RBS  RBS only on light substrates 

Al 
Impurity from 

structural material 
of RH systems 

RBS, PIXE, ERDA   

Si Component of in- 
vessel diagnostics RBS, PIXE, ERDA  

SiH4 (SiD4) used for wall 
conditioning (siliconisation) 

[101] 

Ar Edge cooling agent RBS, PIXE, ERDA  [94] 

Fe, Cr,  
Ni 

Vacuum vessel and 
antennae materials: 

Steel, 
Inconel 

RBS, PIXE, ERDA  
Separation with RBS is difficult. 

ERDA and MEIS allow for 
separation of Cr and Ni 

Cu Impurity from NBI 
system RBS, PIXE, ERDA  PIXE in presence of Fe, Cr, Ni 

Kr Edge cooling agent RBS, PIXE, ERDA  [94] 

Mo 

Vacuum vessel and 
antennae materials: 

Steel, Inconel; 
First mirrors 

RBS, PIXE, ERDA   

W Wall material RBS, PIXE, ERDA   

Re 
Proposed addition to 

W RBS, PIXE, ERDA  Only PIXE in the presence of W 

Au 
In-vessel diagnostics: 

bolometers, 
coated mirrors 

RBS, PIXE, ERDA   

*Only reactions of practical use are listed, i.e. reactions with the detection limit of minimum 5x1014 cm-2. 
 

For most techniques, besides ERDA, the standard lateral resolution determined by beam diameter is in the 
range 0.6-1.2 mm. Detailed mapping of species with a resolution of 1-30 µm is carried out (if needed) with µ- 
RBS, µ-NRA, µ-EPS and µ-PIXE, i.e., using micro-beams formed in a quadrupole-equipped beamline. In ERDA 
or HIERDA which are based on the target irradiation at a shallow angle (usually 22.5o) the beam spot is elongated: 
1x4 mm. 

Taking into account a range of ion beams, beam spot size, broad energy spectrum, tens of nuclear reactions 
and data processing software, the “toolbox” offers a huge number of analytical options. It is also clear that there 
is no single technique to address all needs taking into account the differences in the information depth and 
sensitivity for detecting respective species because these parameters are decided by energy-dependent stopping 
powers in ion-target systems, and by cross-sections of individual processes. 

The IBA methods are complementary to each other and, they are complementary to other techniques for 
characterisation of PFMC and fuel inventory. In the case of light isotopes, particularly in fuel retention studies, 
3He-based NRA plays a prominent role. It is the only method to determine quantitatively the areal distribution and 
depth profiles of deuterium down to tens of micrometres in light substrates [73]. Micro-NRA facilities deuterium 
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mapping in regions of highly not uniform content of that isotope [102,103] and even in single grains of dust 
[104,105]. NRA complements results of the gas balance assessment in fusion devices [50,79,106,107] and thermal 
desorption spectroscopy (TDS) data [108] to obtain an overview of the global fuel retention. Determination of the 
fuel content in PFMC is crucial to obtain reference targets in the development of in-situ techniques: laser-induced 
desorption (LIDS), breakdown (LIBS) or ablation (LIAS) spectroscopy techniques [109-114]. 

In the third column of Table 2 ERDA is listed in every set of useful/recommended techniques.                                
ToF- HIERDA is an extremely powerful tool in the determination of low-Z isotopes on surfaces, especially when 
using a gas ionization chamber (GIC) detector [115], as it has been shown in studies of PFMC and wall probes 
from the TEXTOR [89,90], JET [77], COMPASS [91] tokamaks, and from laboratory experiments on mirror 
testing [116]. A great advantage is a simultaneous analysis of H, D, 3He and 4He [84]. High mass resolution 
facilitates conclusive results in material migration studies which involve the injection of tracer gases labelled with 
rare isotopes such as 13CH4 [90], 15N2 [90], 18O2 [65,84] when it is essential to discriminate between the main and 
minor isotopes, e.g., 12C eroded from PFMC and the injected 13C tracer. The GIC detector opens possibilities for 
applying other tracers: 10B2H6, 21Ne, 22Ne. Figure 2 shows a spectrum of species detected with a 42 MeV 127I8+ 
beam on the PFC surface retrieved from the TEXTOR tokamak after experiments with 13CH4 and 15N2 tracers. 

 

 

FIG. 2. ToF HIERDA spectrum recorded after tracer experiments for the limiter tile of TEXTOR. 
 

3.2 Ion-induced damage in materials 
 
The other role of accelerators in fusion research is in the ion-induced simulation of neutron damage in 

materials [10,116-118]. The damaged surface structure has a major impact on fuel retention in PFC and, also on 
optical performance of crucial diagnostic components like so-called first mirrors, i.e., metal mirrors acting as 
plasma-facing components in all optical plasma diagnosis systems (spectroscopy and imaging) in ITER, i.e., the 
reactor-class machine under construction. The impact of irradiation with H, 4He (transmutation simulation) and 
Mo, Zr, Nb (simulation of n-induced damage) on the optically active layer of Mo mirrors has been presented [116- 
117]. There are three key points in such study: (i) the selection of irradiation conditions to by H, 4He and high-Z 
species to influence changes in the optically active layer (OAL) of the mirror, i.e., maximum 30 nm of the 
outermost surface; (ii) the irradiation and determination of reflectivity changes; (iii) ToF HIERDA measurements 
of H and 4He depth profiles, their changes in time and the dependence on the irradiation sequence. Plots in Figure 
3(a) and (b) show, respectively, the depth profiles of H and He following the irradiation of polycrystalline Mo 
mirrors only with a 2 keV H+ beam 14x1016 cm-2 and, first with 5x1016 cm-2 of 2 keV 4He+ and then with 14x1016 
cm-2 of 2 keV H+. The results indicate that the damage produced by helium has a strong impact on the amount and 
depth distribution of hydrogen: the H profile is deeper when combined with He implantation. Secondly, the H 
retention is doubled after the He+ irradiation in comparison to the irradiation with H+ only: from 2% to 4% atomic. 
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FIG. 3. ToF HIERDA depth profiles of H and He following two types of irradiation:  
(a) irradiation only with H; (b) irradiation with He followed by H. 

 
3.3 Instrumentation 
 

A pre-requisite for the advanced accelerator-based material research, either analysis or modification, is a 
laboratory (or a network of laboratories) with equipment providing a broad range of capabilities regarding the 
beam composition, energy, current, particle detection and, the control of experimental parameters: gas feed, 
temperature etc. A review of twelve accelerator laboratories with a detailed account on the facilities relevant to 
studies of fusion-related materials has been given in [72]. Among them, there are six laboratories capable of 
handling and analysing Be- and T- contaminated materials from JET: from full not sectioned Be tiles                            
(12cm x 20cm) to smaller sectioned samples and dust. Work procedures with such materials (handling, transport 
etc.) have been addressed in [71,72], while very details are in [119]. 
 

 
FIG. 4. Tandem Laboratory at the Uppsala University: (a) the accelerator; (b) analysing magnet;                                  

(c) six beamlines with the description of their main purpose. 
 
New developments of the instrumentation are crucial to enhance and to broaden research capabilities. Images in 
Figure 4 show the 5 MV Pelletron Tandem (National Electrostatic Corporation, NEC) and the beamline 
arrangement at the Tandem Laboratory, Uppsala University, Sweden. Two gas and two sputter ion sources allow 
for the formation of beams in all mass ranges, from low-Z (H - Li), medium-Z (Be – Si) and, with some exceptions, 
high-Z up to Au. There are six beamlines for standard IBA (PIXE, RBS, NRA and ToF ERDA with GIC detector 
[115]) and very specific tasks like 15N NRA with a gamma detector, AMS used mainly in the 10Be [86] and 14C 
analyses, µ-beam with PIXE, RBS, NRA. A separate line is dedicated to material modification by ion irradiation 
while the newly developed system on the sixth beamline is for in-situ and in-operando research: Set-up for In- situ 
Growth, Material modification and Analysis (SIGMA) [120,121]. 
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FIG. 5. SIGMA chamber – 1; viewing ports on both sides of the chamber – 2 and 2’; triple evaporator – 3; 

residual gas analyzer – 4; sample manipulator – 5; ion gun – 6; load-lock chamber – 7. 
 

As already mentioned, all processes involved in PWI are dynamic. Direct in-situ material studies inside 
fusion devices are technically either very challenging or not possible at all. Some fundamental processes can 
therefore be investigated under controlled laboratory conditions. The SIGMA system, presented in Figure 5(a) 
and (b), has been designed to facilitate material modification with in-situ IBA employing both light and heavy 
beams for RBS, NRA, PIXE, PIGE, ToF-ERDA at the 2- 50 MeV energy range. Due to large viewing ports optical 
characterization is also carried out. Several gas feeds, three evaporation cells, a sputter gun (1-5 MeV) enable 
diverse material modification scenarios. Sample annealing to 1100 oC combined with gas phase analysis offers a 
wide range of experimental possibilities in studies of fuel retention in fusion-relevant targets. 

Two other accelerating systems at Uppsala University extend research on material modification [121]. 
With a 350 kV implanter (Danfysik) equipped with three changeable ion sources (gas, oven-based, sputter) the 
simulation of neutron-induced damage by means of light and heavy ion irradiation is carried on mirrors tested for 
diagnostic and heating systems in future fusion devices [116-118]. Two other beamlines are for: (i) ToF-MEIS 
and (ii) low energy RBS and NRA. The application of MEIS [77] ensured sensitive high-resolution determination 
of surface composition and has led to new topics in material migration. 

A low energy ion gun (up to 10 kV) in another system equipped with two chambers is the base for ToF 
Low Energy Ion Scattering (ToF LEIS), Auger Electron Spectroscopy (AES) and Low Energy Electron 
Diffraction (LEED) [122]. Material modification capabilities annealing, sputtering and in-situ growth of thin 
layers. In all materials analyses, the quantification of composition is essential. In the case of IBA, it relies on the 
energy dependent cross-sections in the interactions of fast particles with matter. 

4. STOPPING AND REACTION CROSS-SECTIONS 

The energy deposition by energetic charged particles in matter is conveniently described by the energy 
deposition per unit path length, commonly referred to as stopping power (S). Dependent on the nature of the 
interaction, i.e. whether energy is deposited by elastic interaction between ion and target nuclei or by excitation 
of the electronic system of the target, one refers respectively to electronic (Se) or nuclear (Sn) stopping power 
[123]. By a convenient transformation one obtains the stopping cross section by normalization by the atomic 
density N, which yields a quantity independent of the mass density of the target material. In any representation, 
accurate knowledge on the specific energy deposition of charged particles forms a key ingredient for quantification 
in ion beam analytical methods, by providing depth scales, in ion implantation by allowing for a prediction of 
particle range and in modelling of, e.g., sputtering processes and defect formation [69,124]. At high energies, the 
interaction with the target electronic system has been already early modelled successfully by Bethe [125] with 
subsequent further improvements [126-128]. Towards lower energies, interaction becomes more complex even 
for the lightest ions, as details of the electronic structure of the material were predicted to affect the energy 
deposition [129]. These effects of the density of states of the irradiated material were later been confirmed in 
several experiments for metals with excitation thresholds for specific electronic states [130-131] as well as for 
insulators featuring a band gap [132,133]. For light ions different from protons, also projectile excitation becomes 
increasingly relevant [134,135] still challenging predictions up to date [136-137]. In a similar fashion as 
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calculations feature an increasing complexity towards low ion energies, the same applies to experiments: stopping 
powers are experimentally most straightforwardly obtained in transmission experiments [138], for which, at lower 
energies, however the deteriorating influence of surface contaminations increases. In backscattering geometry, 
effects of surface contamination are drastically reduced, however, at lower energies, effects of plural and multiple 
scattering affect the spectra, complicating the analysis, requiring accurate simulations [139,140]. An additional 
option, available when sufficiently thin films of the target material cannot reliably be obtained is evaluation from 
the height of a spectrum recorded for a thicker film or bulk of the material of interest [141. In all cases, however, 
material purity is of utmost importance, which is challenging to guarantee for thin layers near a surface [142]. For 
all the reasons above, the database of electronic stopping powers hosted by IAEA [143,144] features only a limited 
number of datasets at low ion energies. Also, the materials, for which stopping powers have been measured or 
calculated is found limited [145]. The most commonly employed source for tabulated stopping powers, the semi 
empirical SRIM-code [146], is thus challenged in its predictive capacity. For many aspects of research on plasma- 
wall interaction is it, however, these low energies, which are most relevant. Low ion energies are not only relevant 
to model sputtering, fuel retention or defect formation, but are similarly necessary for quantification in analytical 
approaches such as Low- and Medium Energy Ion Scattering (LEIS & MEIS) [122,147]. Table 3, summarizes the 
status quo for a number of elemental target materials highly relevant for next generation fusion devices, indicating 
the almost complete absence of data at low energies, as well as the presence of an ambiguity of available data. 

 
TABLE 3. Account on availability of the stopping powers data for selected elements. 

Element H ions He ions 

Be 
No data below 10 keV –                                                

no reliable data below 1 MeV. No data below 200 keV. 

C High number of datasets High number of datasets;                                         
limitations at low energies. 

Mo No data below 50 keV –                                             
data spread in the stopping maximum. 

Only one low-energy dataset –                                    
spread in the stopping maximum. 

W Only one dataset below 100 keV. Only one dataset below 300 keV; two datasets 
differing by 10% at classical IBA energies. 

 
Plots in Figures 6 and 7, show respectively detailed data for H in Be and He in W, thus illustrating the 

limited availability and reliability of reference data at intermediate energies or their complete absence at low 
energies respectively. Recently, the development of new computational approaches such as time-dependent 
density functional theory [148,149] or abandoning the modelling of a homogeneous electron gas [150] provides 
successively better predictions for specific systems, but commonly with high computational expenses. Dedicated 
experiments providing a better insight into the dependence of stopping powers on Z2 [151] or specifically targeting 
materials for PFMC [152] enhance simultaneously the predictive power of semi-empirical approaches. 
Nevertheless, due to the large number of relevant ion-target combinations, energies and experimental approaches, 
a concerted action - as proposed by a number of research groups in the CRP-F11023 coordinated by IAEA - will 
be necessary to build up comprehensive knowledge for the relevant materials in the relevant energy range on the 
stopping of H and He in Be, Fe, Mo and W. A very similar lack of data and thus necessity for acquisition of high-
quality reference data is found for reaction cross-sections of especially 3He with isotopes of Li, Be, B, C, also N 
and O in the 1-6 MeV energy range. 

5. CONCLUDING REMARKS 

The accelerator-based analysis and modification of materials is not an isolated or a passive strand of fusion 
research. The results directly contribute to decisions regarding the wall composition and diagnostic planning in 
the current and future devices, e.g., ITER and DEMO. It is a driving force for improvements and development of 
analytical capabilities (nuclear data sets, detectors, chambers) to ensure cutting edge research. To keep this status, 
continual development of the methods in accordance with what was outlined above is required. Especially the role 
of in-situ and in-operando systems for the material modification and analyses will be crucial for a deep insight 
into the dynamics of fuel retention and segregation of metals in PFMC relevant materials such as EUROFER. 
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FIG. 6. Data availability of experimental reference electronic stopping cross-sections for hydrogen on beryllium. 
 

 

FIG. 7. Data availability on experimental reference electronic stopping cross-sections for helium-4 on tungsten. 
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List of Acronyms 

Acronym Meaning 
AMS Accelerator Mass Spectroscopy 

ERDA Elastic Recoil Detection Analysis 
GDOES Glow Discharge Optical Emission Spectroscopy 

GIC Gas Ionization Chamber (detector) 
HIERDA Heavy Ion ERDA 

IBA Ion Beam Analysis 
ILW ITER-Like Wall 
JET Joint European Torus 

JET-C JET with Carbon wall 
JET-ILW JET with ITER-Like Wall 

LEIS Low Energy Ion Source 
LIAS Laser-Induced Ablation Spectroscopy 
LIBS Laser-Induced Breakdown Spectroscopy 
LID Laser-Induced Desorption 
NRA Nuclear Reaction Analysis 
PFC Plasma-Facing Components 
PFM Plasma-Facing Materials 
RBS Rutherford Backscattering Spectrometry 
RF Radio Frequency 

RGA Residual Gas Analyser 
RH Remote Handling 

SIGMA Set-up for In-situ Growth, Material modification and Analysis 
SIMS Secondary Ion Mass Spectroscopy 
TDS Thermal Desorption Spectroscopy 

ToF-ERDA  Time-of-Flight ERDA/HIERDA 
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