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Inverse Compton scattering (ICS) can generate high-flux, energy-tunable, narrow-band, collimated 
beams of X-rays or gamma-rays in a compact setting [1,2]. It works by scattering laser photons off 
relativistic electrons, whereby the electrons transfer part of their energy to the photons and up-shift their 
energy to the keV or MeV range. Fig. 1 illustrates the principle of ICS and plots the energy of the X-
rays or gamma-rays vs. electron energy for the operating ranges of the CLS and CGS systems described 
below.  

 
FIG. 1. (a) Principle of inverse Compton scattering. (b) X-ray and (c) gamma-ray energy as a function 
of electron energy.  

The Lyncean Compact Light Source (CLS) [3] bridges the large performance gap between conventional 
and synchrotron X-ray sources, providing high flux and brightness, collimated, energy-tunable and 
quasi-monochromatic X-rays in a local laboratory. It enables a variety of techniques such as X-ray 
imaging, diffraction, spectroscopy and scattering with synchrotron-like capabilities. At the Munich 
Compact Light Source (MuCLS) [4,5], a Lyncean CLS has been operating in a user facility since 2015, 
with a research focus on biomedical imaging (see, for example, references in [3,5]). An application 
example is shown in Fig. 2.  

A new design, the CLS 300 [6], is more than two orders of magnitude brighter than the MuCLS. 
Depending on configuration, it covers an X-ray energy range of about 30-90 keV, or 60-180 keV. It 
will provide X-ray flux of >4 x 1012 photons/s with a beam divergence of 4 mrad and a bandwidth 
around 10%. This is well-suited for high resolution, micro-CT imaging of millimeter-sized samples at 
micron resolution, with a flux density similar to some high-energy synchrotron beamlines. The beam 
properties of the new design are also compatible with focused beam applications such as high-energy 
diffraction, since using a lower divergence part of the beam with lower bandwidth allows the use of 
several types of X-ray optics commonly used at synchrotron beamlines. Furthermore, it provides a 
pathway to clinical implementation of radiotherapy requiring collimated, narrow-bandwidth, energy-
tunable beams, such as microbeam radiation therapy (MRT). 

(a) (b) CLS 300 (c) CGS  
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FIG. 2. (a) Photograph of the Lyncean Compact Light Source. (b) Example of a dynamic in vivo 
imaging application from the Munich Compact Light Source, showing delivery of liquid instillations 
to the nose of a mouse (adapted from [7], Creative Commons License).  

Monochromatic, tunable gamma-ray beams with high spectral density (flux/eV) are of interest for many 
applications [8,9]. Since no monochromators exist for gamma-rays, such beam properties must be 
generated at the source, and ICS is the only practical method to do so. Lyncean Technologies is currently 
developing the Compact Gamma-ray Source (CGS). The first CGS will be installed as the Variable 
Energy Gamma (VEGA) System at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP), a 
European Center of Excellence for scientific research in high-power lasers and nuclear physics in 
Romania (http://www.eli-np.ro).  

Upon completion, this gamma-ray source will have about an order of magnitude higher flux and a factor 
of two lower bandwidth than the current state of the art. It will deliver gamma-rays with continuously 
variable energy from 1 to 19.5 MeV, covering the energy range relevant for low-energy nuclear physics 
and astrophysics studies, as well as applied research in materials science, management of nuclear 
materials, and life sciences. The beam will be quasi-monochromatic with a relative bandwidth of <0.5%, 
high intensity with a spectral density of >5 x 103 ph/eV/s and linear polarization of >95%.  
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