IAEA-CN301-154

STATUS REPORT OF THE n_TOF FACILITY AFTER THE 2nd CERN LONG SHUTDOWN PERIOD

Nikolas PATRONIS n_TOF Physics Coordinator CERN, EP-UNT Department of Physics, University of Ioannina

(nikolaos.patronis@cern.ch)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

Motivation:

High precision neutron induced cross section measurements for:

- a) Nuclear astrophysics
- b) ADS systems and G4 Fast neutron reactors
- c) Medical physics
- d) Basic research
- e) ...
- Proton beam from PS (20GeV)
- 1 pulse / 1.2s

IAEA-CN301-154

- 300 neutrons /proton
- 7e12 protons/pulse

International Conference on Accelerators for Research and Sustainable Development

Slide 2/18 Nikolas PATRONIS

Two experimental areas (EAR)

- Horizontal flight path • EAR1 at 200 m
 - Vertical flight-path EAR2 at 20 m

Both beam lines with

- 1st collimator
 - halo cleaning, initial beam shaping
- Filter station •
- Sweeping magnet
- 2nd collimator for beam shaping •

IAEA-CN301-154

Slide 3/18

Nikolas PATRONIS

CERN

Nikolas PATRONIS

Slide 4/18

IAEA-CN301-154

3rd generation target

courtesy of Oliver Aberle and Marco Calviani, CERN

Accelerators for Research and Sustainable Development

EAR1 beam commissioning

IAEA-CN301-154

Slide 6/18

Nikolas PATRONIS

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

Nikolas PATRONIS

- High instantaneous
 neutron
- Well collimated neutron beam (two Ø options: 8 cm & 2 cm)
- High energy resolution (~10⁻⁴)
- Large energy range (meV – GeV)

Slide 7/18

IAEA-CN301-154

CERN

////(

EAR1

#Accelerators2022

23-27 May 2022

IAEA, Vienna, Austria

erators for Research

and Sustainable Development

Accelerators for Research

and Sustainable Development

/nT(

23–27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-154 Slide

Slide 8/18

EAR2 beam commissioning

IAEA-CN301-154

Slide 9/18

Nikolas PATRONIS

International Conference on Accelerators for Research and Sustainable Development

- High instantaneous neutron flux (EAR2: 10⁶n/cm²/10ms)
- Well collimated neutron beam (two ø options: 6 cm & 2 cm)
- High energy resolution
- Large energy range (meV – MeV)

CERN

IAEA-CN301-154

Slide 10/18

The NEAR station

The NEAR Station is the n_TOF facility's new high-flux irradiation station.

Two regions of activities

- 1) The irradiation area i-NEAR. Located next to the lead spallation target: high neutron dose material studies
- 2) The activation area a-NEAR. Located just outside the target bunker shielding, at only 3m distance from the target: nuclear astrophysics studies

IAEA-CN301-154 Slide 11/18

Nikolas PATRONIS

23-27 May 2022

The NEAR station

IAEA-CN301-154

Slide 12/18

Nikolas PATRONIS

Accelerators for Research and Sustainable Development

#Accelerators2022 23–27 May 2022 IAEA, Vienna, Austria

The NEAR station

n_TOF target area shielding **CLOSED**

Sample + filter assembly support

heutrons G EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee

> Neutron capture cross section measurements by the activation method at the n TOF NEAR Station

> > [5 January 2022]

Elisso Stamati^{1,2}, Alice Manna^{3,4}, Gianpiero Gervino^{5,6}, Ana-Paula Bernardes¹, Nicola Colonna⁷, Maria Diakaki⁸, Cristian Massimi^{3,4}, Alberto Mengoni^{9,4}, Riccardo Mucciola^{10,11}, Nikolas Patronis^{2,1}, Pedro Vaz¹², Rosa Vlastou⁸, and the n_TOF Collaboration13

IAEA-CN301-154

Slide 13/18

Nikolas PATRONIS

International Conference on **Accelerators for Research** and Sustainable Development

etector developments

Radiative captur<u>e reactions (n, γ)</u>

⁷⁹Se(n,γ) XS @ EAR1

- Physics motivation:
 - s-process nucleosynthesis (A~80)
 - Stellar site thermometer
 - Nuclear waste disposal and transmutation
 - First measurement

IAEA-CN301-154

- Sample: ⁷⁸Se irr. @ ILL, PSI preparation & characterization
- i-TED n_TOF detector development

Slide 15/18

combines compton *i*maging (*n*-background reduction) with *T*otal *Energy Deposition technique*

- Advantageous for isotopes/energies with high (n,el)
- Gain (n, γ)/background wrt standard C₆D₆ detectors ~4-10

Nikolas PATRONIS

national Conference on elerators for Research Sustainable Development

⁷⁹Se(n,γ) XS @ EAR1

- Physics motivation:
 - s-process nucleosynthesis (A~80)
 - Stellar site thermometer
 - Nuclear waste disposal and transmutation
 - First measurement

IAEA-CN301-154

- Sample: ⁷⁸Se irr. @ ILL, PSI preparation & characterization
- i-TED n TOF detector development

Slide 16/18

combines compton *imaging* (*n*-background reduction) with **T**otal **E**nergy **D**eposition technique

- Advantageous for isotopes/energies with high (n,el)
- Gain (n,γ) /background wrt standard C₆D₆ detectors ~4-10

⁷⁹Se(n,γ) XS @ EAR1

CERN

/ntof

#Accelerators2022 23–27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-154

Slide 17/18

Conclusions

- The n_TOF facility is expanding: one more experimental area is already in data-taking mode of operation
- The excellent characteristics of EAR-1 are preserved or even slightly imporved
- The EAR-2 neutron flux is increased by a factor of 2
- The EAR-2 resolution function is hugely improved with respect to phase 3
- New innovative detection setups are already there: new physics is about to come ...stay tuned

Thank you

O. Aberle¹ C. Domingo-Pardo⁷ V. Alcayne² R. Dressler²³ S. Amaducci^{3,4} Q. Ducasse²⁴ E. Dupont⁹ J. Andrzejewski⁵ L. Audouin⁶ I. Durán¹⁶ Z. Eleme²⁵ V. Babiano-Suarez⁷ M. Bacak^{1,8,9} M. Barbagallo^{1,10} A. Ferrari¹ S. Bennett¹¹ P. Finocchiaro³ E. Berthoumieux⁹ V. Furman²⁶ J. Billowes¹¹ K. Göbel²⁷ D. Bosnar¹² R. Garg²² A. Brown¹³ A. Gawlik⁵ M. Busso^{10,14,15} S. Gilardoni¹ M. Caamaño¹⁶ I. F. Gonçalves²⁸ L. Caballero-Ontanava⁷ F. Calviño¹⁷ C. Guerrero¹⁸ M. Calviani¹ F. Gunsing⁹ H. Harada²⁹ D. Cano-Ott² A. Casanovas¹⁷ S. Heinitz²³ F. Cerutti¹ J. Heyse³⁰ D. G. Jenkins¹³ F. Chiaveri^{1,11} N. Colonna¹⁰ A. Junghans³¹ F. Käppeler³² G. Cortés¹⁷ M. A. Cortés-Giraldo¹⁸ Y. Kadi¹ A. Kimura²⁹ L. Cosentino³ S. Cristallo^{14,19} I. Knapová³³ L. A. Damone^{10,20} M. Kokkoris²¹ P. J. Davies¹¹ Y. Kopatch²⁶ M. Diakaki^{21,1} M. Krtička³³ M. Dietz²⁴ D. Kurtulgil²⁷

H. Leeb⁸ S. J. Lonsdale²² D. Macina¹ A. Manna^{34,35} B. Fernández-Domínguez¹⁶ T. Martínez² A. Masi¹ C. Massimi^{34,35} P. Mastinu³⁶ M. Mastromarco¹ E. A. Maugeri²³ A. Mazzone^{10,37} E. Mendoza² A. Mengoni³⁸ E. González-Romero² P. M. Milazzo³⁹ F. Mingrone¹ J. Moreno-Soto⁹ A. Musumarra^{3,40} A. Negret⁴¹ R. Nolte²⁴ F. Ogállar⁴² A. Oprea⁴¹ N. Patronis²⁵ A. Pavlik⁴³ J. Perkowski⁵ L. Persanti^{10,14,19} C. Petrone⁴¹ E. Pirovano²⁴

 Ladarescu⁷ C. Lederer-Woods²² J. Lerendegui-Marco¹⁸ V. Michalopoulou^{21,1}

I. Porras⁴² J. Praena⁴² J. M. Quesada¹⁸ D. Ramos-Doval⁶ T. Rauscher^{44,45} R. Reifarth²⁷ D. Rochman²³ Y. Romanets²⁸ C. Rubbia¹ M. Sabaté-Gilarte^{18,1} A. Saxena⁴⁶ P. Schillebeeckx³⁰ D. Schumann²³ A. Sekhar¹¹ A. G. Smith¹¹ N. V. Sosnin¹¹ P. Sprung²³ A. Stamatopoulos²¹ G. Tagliente¹⁰ J. L. Tain⁷ A. Tarifeño-Saldivia17 L. Tassan-Got^{1,21,6} Th. Thomas²⁷ P. Torres-Sánchez42 A. Tsinganis¹ J. Ulrich²³ S. Urlass^{31,1} S. Valenta³³ G. Vannini^{34,35} V. Variale¹⁰ P. Vaz²⁸

A. Ventura³⁴ D. Vescovi^{10,14} V. Vlachoudis¹ R. Vlastou²¹ A. Wallner⁴⁷ P. J. Woods²² T. Wright¹¹ P. Žugec¹²

The n TOF Collaboration

CERN

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

