IAEA-CN301-131

REVIEW OF THE DIFFERENT ACCELERATOR-BASED BNCT FACILITIES WORLDWIDE AND AN ASSESSMENT ACCORDING TO THE ALARA CRITERION

María Eugenia Capoulat & Andrés J. Kreiner Accelerator Technology and Applications Department, National Atomic Energy Commission-CNEA-Argentina

(kreiner@tandar.cnea.gov.ar & capoulat@tandar.cnea.gov.ar)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

Introduction.

- Aim: To evaluate and assess the long-term operation sustainability of a representative group of AB-BNCT facilities from the point of view of activation, both at the target (by the primary beam) and at the Beam Shaping Assembly (BSA) (by neutrons).
- ALARA: Generation of radioactivity and exposure to ionizing radiation should be As Low As Reasonable Achievable.
- Applying ALARA to AB-BNCT Facilities: Residual Radioactivity
 - Target and beamline (primary beam + neutrons)
 - Beam Shaping Assembly (BSA) and shielding (neutrons)
 - Any other material exposed to neutrons (treatment room, etc).

IAEA SAFETY GUIDE RS-G 1.7

Levels of clearance (in Bq/g) for bulk materials containing radionuclides of artificial and natural origin. Clearance: removal of radioactive materials within authorized practices from any further regulatory control by the Regulatory Body (RB). Reference for national regulation.

IAEA SAFETY REPORTS Series Nº44

General approach for deriving the activity concentration values for exclusion, exemption and clearance. Effective dose <10 µSv/y (average over several "scenarios").

Effective dose < 1 mSv/y for low probability "scenarios".

Application of the Concepts of Exclusion, Exemption and Clearance

SAFETY GUIDE

No. RS-G-1.7

Safety Reports Series No.44

> Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance

IAEA-CN301-131 Slide 2/17

Speaker name: Andres J. Kreiner

AB-BNCT facilities worldwide.

Based on the neutron production reaction, target material and beam energy, AB-BNCT facilities fit to one of the listed below:

Target- reaction	Beam energy (MeV)	Beam current (mA)	Máx. neutron energy (MeV)	Percentage of yield with energy ≤ 1 MeV	Institute, Country					
⁷ Li(p,n) ⁷ Be	2.3-2.8	10-30	0.79-1.1	100-92	Helsinki Univ. Hospital, Finland. National Cancer Center, Japan. Edogawa Hosp., Japan. Nagoya Univ., Japan. Shonan Kamakura Hosp., Japan. Soreq, Israel. Xiamen Humanity Hosp., China. IHEP, China. Budker Inst., Russia. CNAO, Italy. Birminham Univ., UK. Granada Univ., Spain.					
⁹ Be(p,n) ⁹ B	30	1	28.15	9	Kyoto Univ., Japan. Kansai BNCT RC, Japan. South Tohoku Hosp., Japan.					
⁹ Be(p,n) ⁹ B	8-10	10	6.14-8.14	21-17	Tsukuba Univ., Japan. Gachon UnivDawonmax, Korea.					
Thin 8 μm ⁹ Be(d,n) ¹⁰ B	1.45	30	5.76	69	CNEA, Argentina. KIRAMS, Koree					
¹³ C(d,n) ¹⁴ N	1.45	30	6.72	70						
High-energy & intense beams: Beam energies higher than Coulomb										

barriers. Possible risk of activation of the beamline and accelerate parts for long-term operation (not analized here, future work).

High-energy neutrons: Mo surrounding materials (BSA

Primary activation

Due to the interaction of the proton or deuteron beam with different materials .

Nuclear reactions (p, X), (d, X) leading to radioactive products (X stands for any open reaction channel).

Target

Beam stopper or anti-blistering plate.

Beamline, due to the 'halo', scattering on the residual gas.

Any other element where the beam unintentionally hits.

IAEA-CN301-131 Slide 4/17

Speaker name: Andres J. Kreiner

Primary activation

Target activation:

Accumulated activity (over 1 year operation) for different targets at indicated beam energy and current:

⁷ Li+p	⁹ Be+p	⁹ Be+p	⁹ Be+d	¹³ C +d
2.3 MeV 30 mA	8 MeV 10 mA	30 MeV 1 mA	1.45 MeV 30 mA	1.45 MeV 30 mA
5.7 TBq/y (⁷ Be)	Only prompt radiation	1.2 TBq/y (⁷ Be) 51 GBq/y (tritium)	54 GBq/y (tritium)	9.3 GBq/y (tritium) 28 MBq/y(¹⁴ C)

Radioactive products and nuclear reactions relevant for each target:

	Product and (T _{1/2})	Reaction	Threshold Energy or Q (MeV)
⁷ Li+p	⁷ Be (53.22 d)	⁷ Li(p,n) ⁷ Be	E_{tresh} =1.88
⁹ Be+p	⁷ Be (53.22 d)	⁹ Be(p,t) ⁷ Be	$E_{tresh} = 13.432$
		⁹ Be(p,d+n) ⁷ Be	$E_{tresh} = 20.4$
30 MeV		⁹ Be(p,p+2n) ⁷ Be	$E_{tresh} = 22.9$
	Tritium* (12.32 y)	⁹ Be(p,t) ⁷ Be	E _{tresh} =13.432
⁹ Be+d	Tritium* (12.32 y)	⁹ Be(d,t) ⁸ Be	Q=4.602
¹³ C+d	Tritium* (12.32 y)	¹³ C(d,t) ¹² C	Q=1.312
	¹⁴ C ** (5700 y)	¹³ C(d,p) ¹⁴ C	Q=5.962
*Pure beta emitt	er, max. beta energy: 18.6 keV **	Pure beta emitter, max. be	ta energy: 156.5 keV

International Conf Accelerators 1 and Sustainal

IAEA-CN301-131

Slide 5/17

Speaker name: Andres J. Kreiner

Secondary activation

<u>Due to the interaction of neutrons with different materials</u>. Nuclear reactions induced by neutrons (n, X) leading to radioactive products.

BSA & Shielding

Backing materials (copper), heat exchanger, cooling water and water filtration.

Concrete or heavy concrete walls (iron ore, rebar, limestone)

Beamline and accelerator components, due to neutrons scattered backwards from the BSA.

Ancillary equipment, wires.

Target (light and very short-lived products)

Any other element exposed to neutrons.

and Sustaina

IAEA-CN301-131Slide 8/17Speaker name: Andrés J. Kreiner

Beam Shaping Assemblies

Based on publications of the different AB-BNCT facilities worldwide, standard BSAs were set up for a representative group of systems:

	E _p or E _d (MeV)	Current (mA)	Moderator	Fast Neutron Filter	Reflector	References	Fast Neutron Moderator Filters
⁷ Li+p	2.3	30	Fluental® MgF ₂ or CaF ₂	None	Pb	L. Guangru et al., 2021 P.Torres-Sánchez, et al., 2021 A. Uritani, et al., 2017 D. Minsky et al., 2014 D.L. Bleuel et al., 1998 C.N. Culbertson, et. Al, 2004	Beam
⁹ Be+p	8.0 30.0	10 1	MgF ₂ CaF ₂	Pb Pb+Fe+Al	Pb	H. Kumada et al., 2018 H. Tanaka et al., 2009	Target
⁹ Be+d	1.45	30	Teflon+Al	None	Pb	A. Burlón et al., 2008, M.E. Capoulat et. al. 2015	Reflector
¹³ C+d	1.45	30	Teflon+Al	None	Pb	A. Burlón et al., 2001, M.E. Capoulat et. al. 2015	Collimato

Activity concentrations (Bq/g) accumulated over 1 year operation were calculated with MCNP and compared to IAEA's guideline values in bulk amounts of material:

IAEA RS-G-1.7 Safety Guide: Application of the concepts of exclusion, exemption and clearance.

IAEA-CN301-131 Slide 9/17 Speaker name: Andrés J. Kreiner

Secondary activation

BSA & Shielding: Intermediate and long-term activation products in some common BSA materials Highlighted are those which will exceed the clearance level in a few years of operation.

Neutrons up to ~ 1 MeV \rightarrow ⁷Li+p

IAEA-CN301-131

Neutrons up to ~ 6 MeV \rightarrow 9Be+p @8 MeV, 9Be+d ¹³C+d

Neutrons up to ~28 MeV \rightarrow 9Be+p @30 MeV

The higher the neutron energy, the larger the number of radionuclides & activation

Slide 10/17

<u>ion</u>	Material	Neutrons up to 1 MeV			Neutrons up	to 6 MeV		Neutrons up to 28 MeV		
ng-term	Fluental	<mark>3-H</mark>			<mark>3-H</mark>	<mark>24-Na</mark>		<mark>3-H</mark> 14-C ⁽⁸⁾	<mark>24-Na</mark> 22-Na	<mark>18-F</mark> 26-Al
SA materials.	MgF ₂ (pure)	None			<mark>24-Na</mark>			<mark>24-Na</mark> 18-F	22-Na 14-C ⁽⁸⁾	3-Н
the on.	CaF ₂ (pure)	<mark>45-Ca</mark> 39-Ar ⁽²⁾	47-Ca	37-Ar ⁽¹⁾	<mark>45-Ca</mark> 39-Ar ⁽²⁾ 41-Ar	<mark>47-Ca</mark> 43-K 35-S	37-Ar ⁽¹⁾ 42-K	45-Ca 39-Ar ⁽²⁾ 41-Ar 38-Cl 40-K	47-Ca 43-K 35-S 18-F 14-C ⁽⁸⁾	37-Ar ⁽¹⁾ 42-K 39-Cl 42-Ar ⁽³⁾ 32-Si ⁽⁴⁾
	Aluminum (pure)	None			<mark>24-Na</mark>			24-Na 22-Na	<u>3-H</u>	26-Al
MeV, ⁹ Be+d,	Lead (pure)	<mark>209-Pb</mark> ⁽⁵⁾ 197-Pt 194-Os	205-Pb ⁽⁶⁾ 200-Pt 200-Au	193-Os 203-Hg 204-Tl	209-Pb ⁽⁵⁾ 197-Pt 194-Os 199-Au	205-Pb ⁽⁶⁾ 200-Pt 200-Au 198-Au	193-Os 203-Hg 204-Tl 3-H	209-Pb ⁽⁵⁾ 197-Pt 194-Os ⁽⁷⁾ 199-Au 202-Tl 202-Pb ⁽⁸⁾	205-Pb ⁽⁶⁾ 200-Pt 200-Au 198-Au 203-Pb 202m-Pb	193-Os 203-Hg 204-Tl 3-H 201-Tl 201-Pb
) MeV	Iron (pure)	<mark>54-Mn</mark> 55-Fe	51-Cr	59-Fe	54-Mn 55-Fe	<mark>51-Cr</mark> 56-Mn	59-Fe	54-Mn 55-Fe 3-H	51-Cr 56-Mn 52-Mn	<mark>59-Fe</mark> 53-Mn 52-Fe 48-V
<u>er the</u>	Lithiated polyethylene (SWX TM)	<mark>3-H</mark> 32-P 47-Ca	<mark>24-Na</mark> 35-S 37-Ar	38-Cl 45-Ca 39-Ar	<mark>3-H</mark> 32-P 47-Ca 43-K 44-K	<mark>24-Na</mark> 35-S 37-Ar 42-K	38-Cl 45-Ca 39-Ar	3-н 32-Р 47-Са	24-Na 35-S 37-Ar	38-Cl 45-Ca 39-Ar
	(¹⁾ e=100%, no g (⁴⁾ 100% b-, max. energy: 227 (⁷⁾ Eg= 82.339 keV Pg=0.011%	keV, no g	(2) 10 (5) 10 (8) T lifet	00% b-, max 00% b-, max _{1/2} ~ 10 ³ y, ime of a faci	energy: 565 energy: 644 very low ind lity.	keV, no g keV, no g uced activity in			30	
Speaker name: .	Andres J. K <u>reir</u>	ner _				International Con Accelerators			-	

and Sustainal

IAEA-CN301-131 Slide 11/17

Speaker name: Andres J. Kreiner

⁹Be+d and ¹³C+d (1.45 MeV, 30 mA)

Coming from activation of Sb and As (typical impurities)

IAEA-CN301-131 Slide 12/17 Speaker name: Andrés J. Kreiner

720 kV accelerator developed at CNEA (1.45 MV is being built)

10 mA proton beam entering into the Faraday cup, viewed through the induced fluorescence in the residual gas.

⁹Be+p (8 MeV, 10 mA)

1 year of operation

IAEA-CN301-131

Slide 15/17 Speaker name: Andrés J. Kreiner

⁹Be+p (30 MeV, 1 mA)

Summary & Conclusions

IAEA-CN301-131

- Induced residual radioactivity in AB-BNCT facilities is significant. Short- & intermediate-lived $\beta \gamma$ emitters are relevant.
- Impact on long-term operation & decommissioning.
- Clearance levels are exceeded in a relatively short life-time (1 y). Need several years to decay below the clearance levels.
- Minor components of alloys and/or impurities are relevant (Cu, Mn and Zn in Al, Fe and steels. The same + Fe and Sb, in Pb alloys). To consider at the design stage.
- ALARA: Generation of radioactivity should be As Low As Reasonably Achievable.

	⁷ Li+p 2.3 MeV 30 mA	⁹ Be+p 8 MeV 10 mA	⁹ Be+p 30 MeV 1 mA	⁹ Be+d 1.45 MeV 30 mA	¹³ C +d 1.45 MeV 30 mA	•	Impact on rutinary operation (not treated in
Target	5.7 TBq/y (⁷ Be)	Only prompt radiation	1.2 TBq/y (⁷ Be) 51 GBq/y (tritium)	54 GBq/y (tritium)	9.3 GBq/y (tritium) 28 MBq/y(¹⁴ C)	•	detail here): Short-lived radionuclides (not considered here) may become relevant
BSA Main RN & (time before clearance)	Fluental Moderator: 3-H (90 y)	Iron Filter: 54-Mn (16 y)	Iron Filter: 54-Mn (17 y) Pure Al Filter: 3-H (4 y) Pb Filter: 203-Hg (1 y)			•	Dose to workers. Tasks involving handling of activated components (maintenance, replacements, etc.)

Thank you for your attention!

Acknowledgements: IAEA for this excellent meeting!

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

