IAEA-CN301-129

Compact Accelerator Based Neutron Sources (CANS) Production of Technetium-99m and Technetium-101

Natalia Mayordomo,¹ Edward J. Mausolf,² Erik V. Johnstone,² David L. Williams,³ Eugene Y. Z. Guan,³ Charles K. Gary,³ Jim Davis⁴

¹Helmholtz-Zentrum Dresden – Rossendorf. Institute of Resource Ecology.

²Innovative Fuel Solutions & AETMX.

³Adelphi Technology inc.

⁴Shertech Laboratories.

From good practices towards socioeconomic impact

Technetium (Z = 43)

Slide 1/14

IAEA-CN301-129

1 H hydrogen 1.000 [1.0078, 1.0082	2		Key:		I	UPAC	Period	lic Tal	ole of	the Ele	ement	' S 13	14	15	16	17	18 2 He helium 40026		
3 Li 1851um 6.94 (6.938, 6.997)	4 Be beryllum 9.0122		atomic numt Symbo name standard stomic w									5 B boron 10.805, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.005, 14.005]	8 0 0xygen 15.999, 16.000j	9 F fluorine 18.998	10 Ne neon 20.180		
11 Na sodium 22.990	12 Mg magnessum 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.059, 32.076j	17 CI chiorine 38.45 [35.446, 35.457]	18 Ar argon 39.95 [39.752, 39.963]		
K potassium	Ca calcium	21 Sc scandium	22 Ti Stanium	23 V vanadium	24 Cr chromium	25 Mn manganese	Fe iron	27 Co cotait	28 Ni	29 Cu	30 7n	31 Ca	32 Go	33 A c	34 So	35 Rr	36 Kr		
39.098	40.078(4)	44.956	47.867	50.942	51.996	54.038	55.845(2)	58.933		From	h the	Gree	ak w	ord T	evun	TO7 (artifi	cial)	
37 Rb rubidium	38 Sr strontium	39 Y yttslum	40 Zr zirconium	41 Nb nicbium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhođium		All it	s iso	tope	s are	radi	oacti	ive	artin	ciary	
55 Cs caesium	56 Ba barlum	57-71 Ianthanoids	72 Hf hathum	73 Ta tantalum	74 W tungsten	75 Re thenium	76 OS osmium	77 Ir Hidium	Ŀ	Mos	t abu	Indar	nt isc	otope	e ⁹⁹ To	2			
132.91	137.33		178.49(2)	180.95	183.64	186.21	190.23(3)	192.22	195.08	196.97	200.59	204.38 [204.38, 204.39]	207.2	208.98					
87 Fr transium	88 Ra radium	89-103 actinoids	104 Rf sutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitherium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihanium	114 FI Serovium	115 Mc mascavium	116 Lv Ilvermarium	117 Ts tennessine	118 Og oganesson	-	
-	17 58 59 60 61 62 63 64 65 66 67 68 69 70 71																		
			La	Ce	Pr	Nd neodymium	Pm	Sm	Eu europium	Gd	Tb	Dy dysprosium	Ho	Er	Tm	Yb ytterbium	Lu		
	LLNE 13891 140.91 144.24 150.36(2) 15196 197.25(3) 182.93 182.50 164.93 167.26 168.99 173.05 174.97 80 00 01 02 03 04 05 06 07 08 00 100 101 102 103																		
RNATIONAL E AND APPL	UNION ED CHEM	OF AISTRY	Ac	Th	Pa	Uranium	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				232.04	231.04	238.03										1. Contraction 1. Con	-		

ErikVJohnstone@gmail.com

Natalia Mayordomo

[1] <u>https://iupac.org/what-we-do/periodic-table-of-elements/</u>
[2] Johnstone, E. V. et al. (2017) *J. Chem. Ed.*.

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

Technetium for Radiodiagnostics: Tc-99m

- 1. First ^{99m}Tc generator produced in 1957 by Tucker and Greene
- 2. Linchpin diagnostic radioisotope: ≈40 M procedures/year
- Commercially produced for large-scale distribution using fission-based (HEU/LEU) targets in nuclear reactors via ⁹⁹Mo
 - Accelerator platforms (cyclotrons, LINACS, neutron generators, etc.) serve as potential alternatives for direct / indirect production
- 4. Multifaceted diagnostic agent: oncology, neurology, cardiology, pulmonology, nephrology, urology, orthopedics, etc.

Issues in supply-chain logistics and operation have led to recurring shortages in the market; LEU ⁹⁹Mo/^{99m}Tc deemed unsustainable

[3] Sukprakun, C. et al. (2022). Brain imaging and behaviour, 15, 1-9.

IAEA-CN301-129 Slide 2/14

Natalia Mayordomo ErikVJohnstone@gmail.com

An Alternative Technetium Isotope: ¹⁰¹Tc

$${}^{101}_{42}\text{Mo}_{59} \xrightarrow[14.62 \text{ m}]{}^{\beta^-} \xrightarrow{101}_{43}\text{Tc}_{58} \xrightarrow[14.02 \text{ m}]{}^{\beta^-} \xrightarrow{101}_{44}\text{Ru}_{57} \text{(stable)}$$

- 1. First reported in 1940 by Sagane *et. al.*; confirmed by Hahn und Strassmann and Maurer and Rahm in 1941
- Produced through a variety of nuclear transformations, either directly or indirectly via ¹⁰¹Mo
- 3. Used for neutron activation analysis (NAA), tracking fission signatures, potential Tc isotope for nuclear medicine
- Often reported as co-contaminant during ^{99m}Tc production (i.e., cyclotron, linac, reactor)

Slide 3/14

IAEA-CN301-129

Ideal for theranostics: $E_{\beta max} \cong 1320 \text{ keV}$ with $E\gamma \cong 306.8 \text{ keV}$ (~89%) \rightarrow similar nuclear decay properties to ³²P, ⁸⁹Sr, ^{188/186}Re and ¹³¹I

Natalia Mayordomo

Another masurium isotope Ma^{99} has been found by Seaborg and Segrè,¹ the half-life of which is 6 hours but it emits very soft β -rays.^{2,3} For the investigation of some special chemical nature of masurium, it would be much more convenient to use Ma^{101} rather than Ma^{99} because it is produced very strongly by bombardment with slow neutrons and also it emits energetic β -rays.

[4] Sagane, et. al.. Phys. Rev. 1940, 57, 70

[5] ENDF/B-VIII database

ErikVJohnstone@gmail.com

Our Motivation

- 1. Provide alternatives for ^{99m}Tc production that promote sustainability, i.e., environmental, economic, and security perspectives
- 2. Neutron irradiations using low-cost, high-yield neutron sources

Slide 4/14

IAEA-CN301-129

 Demonstrate small-scale production and isolation of ^{99m}Tc and ¹⁰¹Tc via low specific activity (LSA) ⁹⁹Mo and ¹⁰¹Mo

ErikVJohnstone@gmail.com

Natalia Mayordomo

**Mausolf, E.; Johnstone, E. Patent Pending, (2018).

adelphi

#Accelerators2022

23-27 May 2022

AEA, Vienna, Austria

Compact Accelerator Neutron Sources (CANS)

[6] https://www.adelphitech.com/products/dd109m-dd110m.html

Neutron Generator (Adelphi DD110)

- Deuterium-deuterium: $d(d,n)^3$ He
 - Acceleration voltage 160 kV
 - Magnetron and ECR ionization source; D⁺current ≈30 mA
- Neutron flux: $2x10^{10}$ n/s to $5x10^{10}$ n/s
- *E*_n = 2.45 MeV
- Isotropic emission from Ti-Cu target
- Cost: ~\$0.1M to \$1.0M
- Power: 10 kW

Pharmaceuticals 2021, 14, 875.

IAEA-CN301-129 Slide 5/14

Natalia Mayordomo

o ErikVJohnstone@gmail.com

Cyclotron (PETtrace 800 series)

- ¹⁸O(p,n)¹⁸F reaction and other (p,n) reactions
 - Accelerating voltage 16.5 MeV
 - H⁻-current ≈75 to 85 μA; up to 100 μA per target; dual target irradiations possible
 - Internal beam; external beam available
- Neutron flux: 5.2x10¹¹ to 1.0x10¹² n/s
- $E_n = 0.1$ to 10 MeV neutrons
- Anisotropic to incoming H-beam
- Cost: ~\$1.0M to \$10M
- Power 75 kW

[7] Asp,et. al. Med Phys,. 2019.

CANS Generation of ^{99m}Tc and ¹⁰¹Tc: Experimentation

IAEA-CN301-129 Sli

Slide 6/14

Natalia Mayordomo

ErikVJohnstone@gmail.com

Neutron Generator Production and Isolation of ¹⁰¹Tc and ^{99m}Tc

- Irradiation for ~15 min; separation performed directly after EOB and measured
- EOB activities ⁹⁹Mo = 52±3 Bq (1.3±0.1 nCi); ¹⁰¹Mo = 1.2±0.1 kBq (32.7±3.5 nCi);
 ¹⁰¹Tc = 4.6±0.5 kBq (124.1±13.2 nCi); no detectable ^{99m}Tc at EOB
- ¹⁰¹Tc rapidly isolated on AC; only one prior report in literature of ¹⁰¹Tc recovery with column chromatography
- Extraction proven viable at ultra-low concentrations of ¹⁰¹Mo/¹⁰¹Tc and ⁹⁹Mo/^{99m}Tc

Pharmaceuticals **2021**, 14, 875.

IAEA-CN301-129 Slide 7/14

Natalia Mayordomo

mo ErikVJohnstone@gmail.com

Hybridized PET Cyclotron Production of ¹⁰¹Tc and ^{99m}Tc

- Irradiations for a total of ~5 hr; between multiple [¹⁸F]FDG runs daily
- 99 Mo yield per day ~13 kBq (3.5 μ Ci); higher neutron outputs trend to higher production
- ¹⁰¹Tc observable x6 $t_{1/2}$ (~14.22 min); no ¹⁰¹Mo observed
- Long(er) t_{irrad} allows for ^{99m}Tc/¹⁰¹Tc co-production, while longer decay yields for pure ⁹⁹Mo/^{99m}Tc
- Ingrowth of ^{99m}Tc tracked in irradiated Mo foils over a week of production

IAEA-CN301-129 Slide 8/14

Natalia Mayordomo ErikVJohnstone@gmail.com

CANS for the Production of ^{99m}Tc and ¹⁰¹Tc

SPECT Model

Neutron-driven production of Tc-99m; exploit ⁹⁹Mo for production

PET Model

Distributed, redundant supply-chain located near the end-user with manageable waste streams and economics

CANS ^{99m}Tc / ¹⁰¹Tc Model

Distributed, redundancy neutron-driven production of Tc-99m / Tc-101 located near the end-user with manageable waste streams using low(er)-cost CANS devices, targetry, and separation platform

Neutron outputs and costs:

Туре	Estimate of Beam Energy (MeV)	Approximate Yield Range (n/s)	Approximate System Cost, Order of Magnitude (\$M)
Reactor *	Not applicable	>10 ¹⁷	~1000
Electron Accelerator [†] with Photoneutron Converter	30–40	5×10^{13} to 1×10^{14}	10
Cyclotron [‡]	10-18.0	$5.7 imes10^{12}$ to $2.1 imes10^{14}$	1–10
RFQ Linac [§]	1.5-3.0	$1 imes 10^{11}$ to $1.3 imes 10^{12}$	1
D-D Neutron Generator	0.1–0.2	1×10^8 to 1×10^{11}	0.1–1
* TRIGA reactor \$270,000 ir 35 MeV, 100 kW electron a figures based on Ref. [37].	n 1972 [33], adjusting for ccelerator described in l	inflation is \$1.72B in 2021 [34] Ref. [35]. [‡] Financial figures b	. ⁺ Financial figures based on ased on Ref. [36]. [§] Financial

 $2 \times 10^{10} \text{ n/s}$ $2 \times 10^{12} \text{ n/s}$ Generator Flux Tc Isotope ^{99m}Tc $101 \mathrm{Tc}$ ^{99m}Tc $101 \,{\rm Tc}$ Produced ⁹⁸Mo ⁹⁸Mo ¹⁰⁰Mo ¹⁰⁰Mo Nat. Mo Nat. Mo Nat. Mo Mo Target Nat. Mo Doses Generated 5 22 53 220 534 2200 5344 22,000 per day Generators 5 21,918 4981 2068 298 205 50 21 Required

Maximize neutron economy and production, while minimizing processing and transportation times for maximizing system output

Pharmaceuticals 2021, 14, 875.

IAEA-CN301-129

Slide 10/14

Natalia Mayordomo ErikVJohnstone@gmail.com

Technetium-101: an alternative approach to radiotheranostics

Most therapeutic radionuclides require a nuclear reactor, fissionable material, or high-energy accelerators for production

Pharmaceuticals 2021, 14, 875.

IAEA-CN301-129 Slide 11/14

Natalia Mayordomo ErikVJohnstone@gmail.com

ErikVJohnstone@gmail.com

Accelerators for Research

and Sustainable Development

23-27 May 2022

IAEA, Vienna, Austria

Natalia Mayordomo

IAEA-CN301-129 Slide 12/14

Conclusions and Outlook

- An efficient method to obtain and isolate ^{99m}Tc and ¹⁰¹Tc was demonstrated
- We envision the use of this methodology to help in providing a reliable and sustainable supply of ^{99m}Tc
- This work opens the door to further explore the use of ¹⁰¹Tc for therapeutic/theranostic applications
- Development of a commercial production unit / separation platform
- Further investigate sustainable avenues for maximizing neutron production / economy while lowering costs, resource consumption, and waste production for new and known radioisotopes

Pharmaceuticals **2021**, 14, 875.

IAEA-CN301-129 Slide 13/14

Natalia Mayordomo

ErikVJohnstone@gmail.com

Thank you

SHERTECH

Any question?

Write us in: ErikVJohnstone@gmail.com

From good practices towards socioeconomic impact

