Preservation of Photographic and Cinematographic Films by Electron-Beam Irradiation

Maria Luiza E. Nagai¹, Maria José A. Oliveira², Elisabeth R. Somessari² and Pablo A.S. Vasquez²

¹University of São Paulo - USP ²Nuclear and Energy Research Institute - IPEN/CNEN

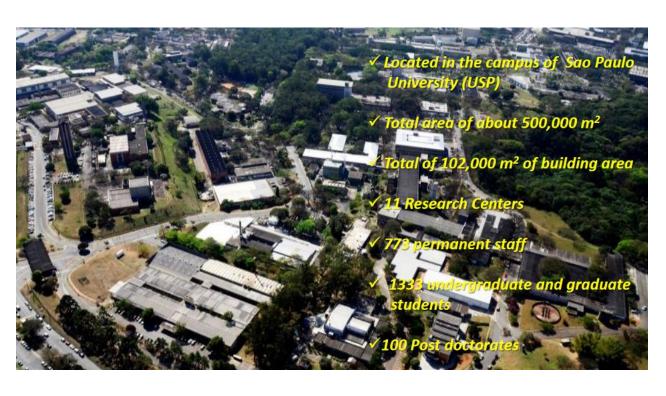
• • • •

pavsalva@usp.br

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact


Nuclear and Energy Research Institute -IPEN

Ministry of Science and Technology

Nuclear and Energy Research Institute

IAEA-CN301-8

Brazilian weather conditions have been affected directly tangible materials

Natural disasters

Fungi attack
Biodeterioration

and Sustainable Development

Ionizing Radiation to Support Conservation and Preservation of Tangible Cultural Heritage (CH) in Brazil

1. Disinfection by ionizing radiation

material characterization, R&D on several materials,

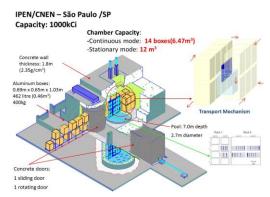
Side-effects studies

2. Consolidation by ionizing radiation

-resins – polymerization – cross linking

3. Developing of new nanostructured materials for cleaning surfaces of CH by ionizing radiation R&D, natural polymers, blends

Radiation Technologies available at IPEN


Gamma Irradiation

Cobalt-60

IAEA-CN301-8

Brazilian technology - 2004 : 1000kCi Category IV (IAEA -SSG-8)

EB Accelerators

JOB 188 – 1,5 MeV 37.5kW
Radiation Dynamics, Inc. (RDI),
R&D

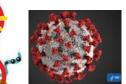
-Mobil Unit

JOB 307 - 97.5 kW, 1.5MeV
Continuous treatment system
(300 m/min)
Commercial aplications

23-27 May 2022

0.7MeV-20kW

E-beam Irradiation Facility



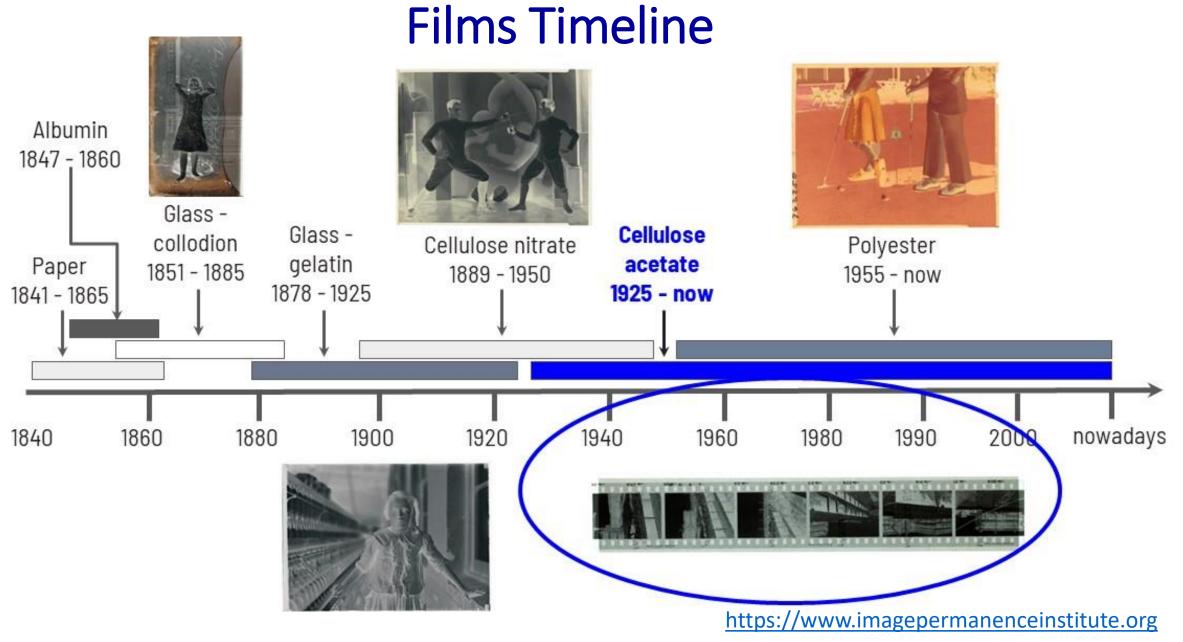
Irradiation or radiation processing

- a) Physical effects
- **b)** Chemical effects
- c) Biological effects

Polymerization Cross-linking Grafting

Biocidal action

*Eliminates/inhibits/sterilizes...


insects and Microorganisms such as bacteria and fungi

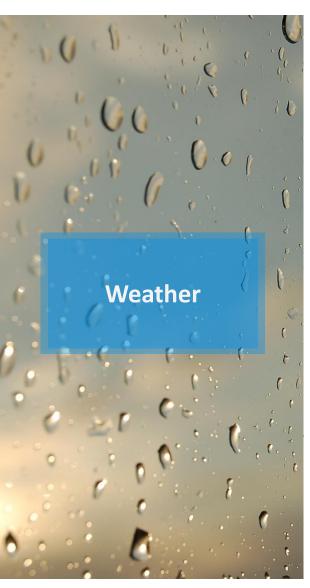
Virus Inactivation

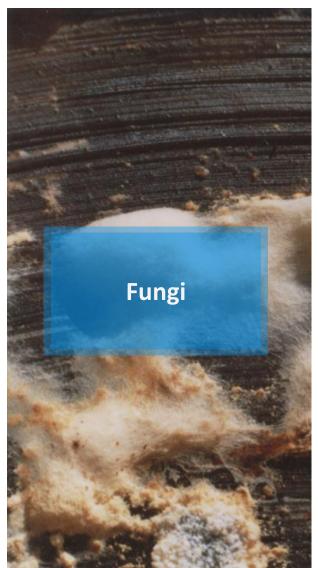
- Electron Beam Accelerator JOB 188 (Dynamitron®)
- energy 1.5 MeV
- beam current 25 mA
- scan 60 to 120 cm
- beam power 37.5 kW

Applications:

- irradiating and sterilizing medical products
- silicon wafer processing
- food
- composites modification
- polymer modification
- shrink wrap sheet products
- tire and rubber pre-cure treatment
- chemical or biological wastes

Typical deterioration in cellulose acetate films


Brazilian weather conditions affect photographic and cinematographic collections.


Fungi contamination main causes of biodeterioration in photographic and cinematographic collections.

Vinegar Syndrome

Chemical deterioration, Substrate: buckle, shrink and brittle.

Production of acetic acid (vinegar)
Deacetylation

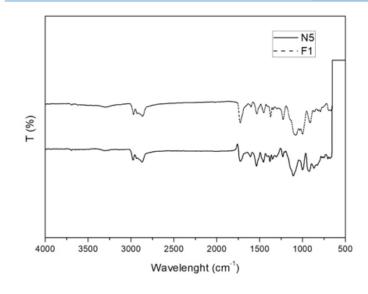
Vir

Vinegar Syndrome Examples

https://www.nfsa.gov.au/preservation/preservation-glossary/vinegar-syndrome
http://www.micrographics.co.nz/wp-content/

Films Samples

(N5)


Figure 1. Samples of photographic negative (N5) and cinematographic film (F1) selected from University of Sao Paulo libraries.

Goal of the study

- Characterization of the films.
- Evaluate electron beam radiation effects for the disinfection of photographic and cinematographic films.
- Check the effect of ionizing radiation-induced crosslinking (vinegar syndrome)

Results

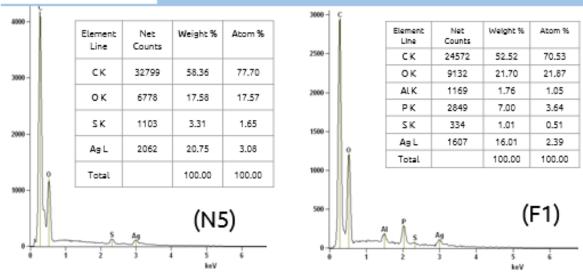
FTIR-ATR samples characterization

Figure 2. The infrared spectra of two samples showed coincident peaks of cellulose triacetate (CTA), gelatin and triphenyl phosphate (TPP).

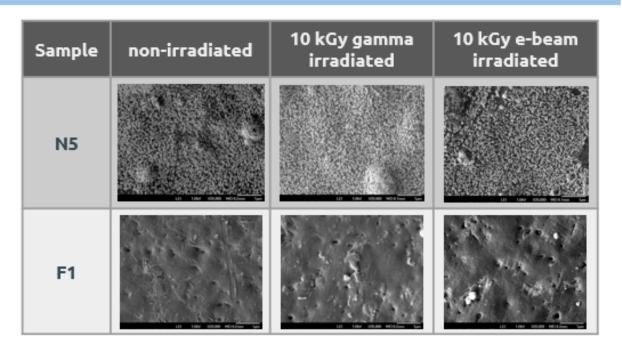
23-27 May 2022

Research Model

Film samples selection


Caracterization
FTIR-ATR
FEGSEM-EDS

electron beam irradiation 2-200 kGy effects
evaluation
UV-Vis/FEGSEM/TG/DSC


FEG-SEM micrographs

FEG-SEM

IAEA-CN301-8

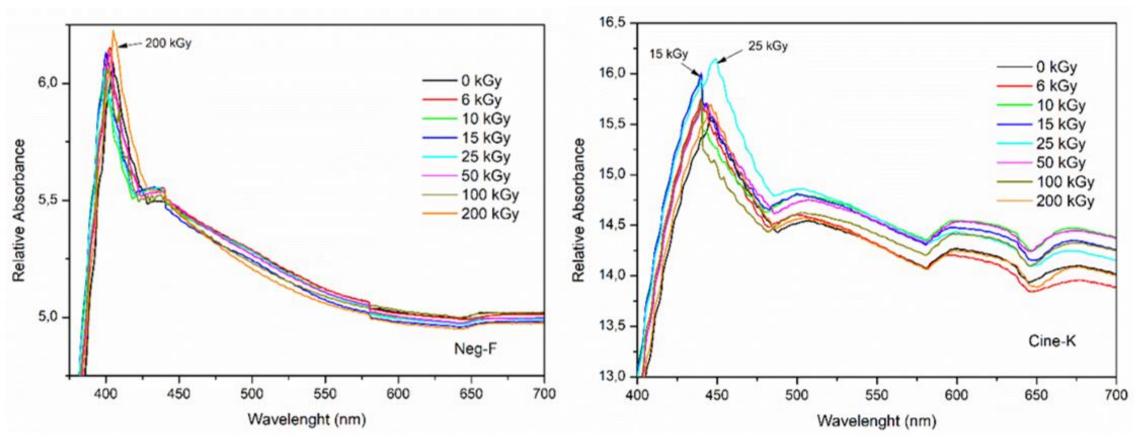
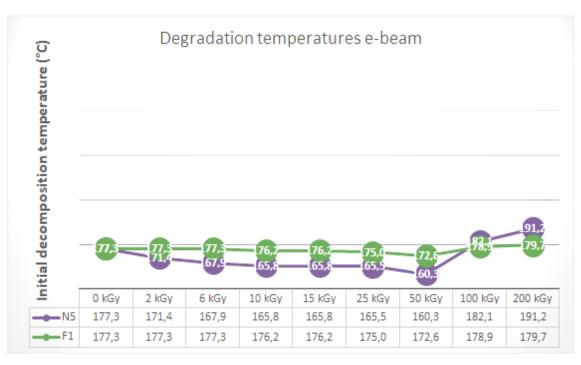


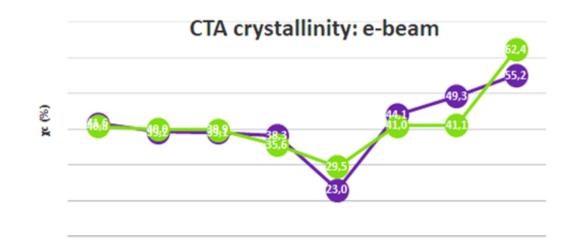
Figure 3. Spectrum of the elements distribution non irradiation samples. All samples show carbon and oxygen as majority elements due to the organic compounds of film materials. Coating samples with carbon enhances the carbon peak of the EDS spectrum. Silver are the photosensitizing element. Phosphorus from TPP plasticizer can be observed in sample F1. Sulfur came from the fixing solution of thiosulfate. Aluminum can be attributed to the sample-holder material.

Table 1. Micrographs of the non–irradiated (0kGy) and irradiated samples (10kGy). Different kind of intensities and variations of white and black contrast can be associated with specific elements or with impurities and superficial contamination.

UV-Vis spectrophotometer outcomes



Sample: Neg-F Sample: Cine-K.


Limit for disinfection: 10 kGy

Thermal analysis

Thermogravimetry (TG)

Differential Scanning Calorimetry (DSC)

		0 kGy	6 kGy	10 kGy	15 kGy	25 kGy	50 kGy	100 kGy	200 kGy
-	- N5	41,6	39,2	39,1	38,3	23,0	44,1	49,3	55,2
-	-F1	40,8	40,0	39,9	35,6	29,5	41,0	41,1	62,4

. TG results of samples N5 and F1 irradiated with different irradiation doses. crosslinking at doses strating at 50 kGy.

crosslinking dose: 50 kGy

DSC results of samples N5 and F1 irradiated with different irradiation doses. Higher degrees of crystallinity (indicative of crosslinking) were identified at doses starting at 50 kGy.

Conclusions

- **Disinfection** by electron beam radiation can be achieved safely applying radiation absorbed doses between 6 kGy to 10 kGy with no significant change or modification of main properties of the constitutive polymeric materials.
- Electron beam irradiation, due to the effect of crosslinking is presented as an alternative to treat films affected by "vinegar syndrome" applying absorbed dose of **50 kGy** in order to increase shelf life of cultural heritage materials. However, a specialized restoration process is required after irradiation process.

IAEA-CN301-8

Thank you

Acknowledgements:

- -International Agency of Atomic Energy IAEA
- -Nuclear and Energy Research Institute IPEN
- -University of São Paulo USP
- -Coleção Ivani e Jorge Yunes CIJY

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

