DEVELOPMENTAL WORK ON ECONOMIC PRODUCTION OF HIGH AND LOW SPECIFIC ACTIVITY ⁶⁴CU – SUITABLE FOR PRECLINICAL STUDIES USING ACCELERATOR NEUTRONS

A. GOPALAKRISHNA Board of Radiation and Isotope Technology, Mumbai , India Email: <u>garjun68@yahoo.co.uk</u>

Amit KUMAR Board of Radiation and Isotope Technology, Mumbai, India

P. MALETHA, KAMALDEEP, S. V. SURYANARAYANA, H. NAIK, B. K. NAYAK, S. P. KULKARNI Bhabha Atomic Research Centre, Mumbai , India

P. MUKHERJEE Board of Radiation and Isotope Technology, Mumbai , India

Abstract

 64 Cu is a theranostic radioisotope which is generating interest in the field of PET imaging and planning of therapy. Several radiochemical and pre-clinical studies need to be carried out to establish suitability and stability of new 64 Cu radiopharmaceuticals. However, obtaining 64 Cu is an expensive process as it is typically available via proton irradiation of enriched 64 Ni in a medical cyclotron. The paper investigates an economical method of obtaining 64 Cu with activity levels suitable for research scale production / radiochemical experiments utilizing accelerator neutrons. Natural foils of Cu and Zn were irradiated in the neutron field produced during the irradiation of 18 O, in the routine production of 18 F via the 18 O(p,n) 18 F route in a medical cyclotron. Evaluation of yields of 64 Cu and radionuclidic impurities were determined by the quantification of the photo-peaks by off-line gamma -ray spectrometry. No carrier added 64 Cu was separated from the irradiated zinc by solvent extraction with high radionuclidic purity and separation yields of > 90%. The average yields of low specific activity and high specific activity 64 Cu at the end of bombardment was 455 and 861 Bq/g*microampere*h respectively.

1. INTRODUCTION

⁶⁴Cu has generated interest in the field of PET imaging and planning of therapy [1], as it decays by three different routes, namely, electron capture, β - and β + decay. Its half-life of 12.8 h also makes it suitable for versatile applications.

The utility of reactor produced low specific activity (LSA) ⁶⁴Cu produced via ⁶³Cu(n, γ)⁶⁴Cu reaction and its use in the form of [⁶⁴Cu]CuCl₂ as a radiopharmaceutical for PET imaging of prostate cancer and glioblastoma patients have been demonstrated [2]. However the utilization of ⁶⁴Cu is mostly limited to studies, sourcing no carrier added high specific activity (HSA) ⁶⁴Cu, produced via the ⁶⁴Ni(p, n)⁶⁴Cu route in a medical cyclotron [3] . ⁶⁴Ni has a natural abundance of < 1 %. An enriched ⁶⁴Ni target is required to produce ⁶⁴Cu, increasing the cost of the radiochemical and pre-clinical studies that need to be carried out to establish suitability and stability of new ⁶⁴Cu radiopharmaceuticals.

Radiochemical studies and uptake studies performed on mice use activity of the order of only a few hundred microcuries [4, 5] This study investigates the potential of an economical method for research scale production of ⁶⁴Cu utilizing accelerator neutrons produced in the routine irradiation of ¹⁸O in a medical cyclotron.

2. MATERIALS AND METHODS

2.1 Neutron Source and Irradiation parameters

The study was carried out in the medical cyclotron facility of PETtrace-800 cyclotron at the Radiation Medicine Centre, Mumbai, India. The cyclotron accelerates protons and deuterons to fixed energies of 16.5 MeV and 8.4 MeV respectively. The six target assemblies of liquid and gaseous targets (Fig 1), enables production of ¹³N, ¹⁵O, ¹¹C and ¹⁸F. However, to meet current demands of nuclear medicine centres, the cyclotron is used for regular production of only the ¹⁸F isotope in 12 - 15 irradiations per week. The ¹⁸F routine production is carried out via the ¹⁸O(p,n)¹⁸F route in the liquid target irradiation system. ¹⁸F produced is converted to [¹⁸F] radiopharmaceuticals - [¹⁸F] FDG, [¹⁸F] FET, [¹⁸F] FLT and [¹⁸F] NaF, as per the requirement. The Table 1 illustrates the features of the cyclotron and target irradiation system. Natural foils of Cu, and Zn, were irradiated in the neutron field. The proton beam current was set at 55 microamperes.

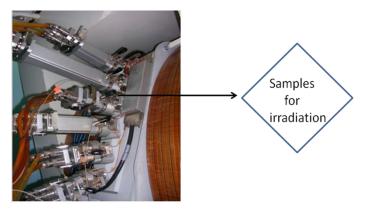


FIG. 1: Target irradiation systems in the Medical Cyclotron facility and experimental setup for irradiation

Cyclotron	PETtrace 800
Proton energy	16.5 MeV (Fixed)
Beam Current (H ⁻)	1 – 75 μA (Variable)
Liquid target irradiation system	Target- H2 ¹⁸ O water ¹⁸ O enrichment - 98% Volume - 2.4 mL Cavity- Ag

TABLE 1: Features of the Cyclotron and target irradiation system

2.1. Evaluation of the yield of ⁶⁴Cu and radionuclidic impurities

Radioactivity levels of ⁶⁴Cu and other radioisotopes co-produced were determined by the quantification of photo-peaks by off-line gamma-ray spectrometry [6]. The γ -ray counting of radionuclides was performed using a pre-calibrated HPGe detector coupled to a PC based 4K channel analyzer. The energy and efficiency calibration of the detector system was carried out using a standard ¹⁵²Eu source. Radioactivity levels of ⁶⁴Cu and of the radionuclidic impurities ⁶⁵Zn, ^{69m}Zn were determined by the quantification of the photo-peak counts of the 1345.8 keV, 1115.5 keV, 438.6 keV γ -lines respectively. Co-produced ⁶⁷Cu was quantified by the 184.6 keV γ -line. Spectroscopy software, Interwinner 7 was used for the analysis.

2.2. Separation of ⁶⁴Cu from irradiated zinc

The irradiated zinc was dissolved in concentrated hydrochloric acid and evaporated to dryness. No carrier added ⁶⁴Cu was separated from the irradiated zinc via solvent extraction [6-8]. Solvent extraction with dithizone (diphenylthiocarbazone) dissolved in CCl₄, a water immiscible medium was carried out. The Fig 2 shows the

schematic of the radiochemical separation process. The separation yields were determined by measuring the ⁶⁴Cu activity before and after the separation.

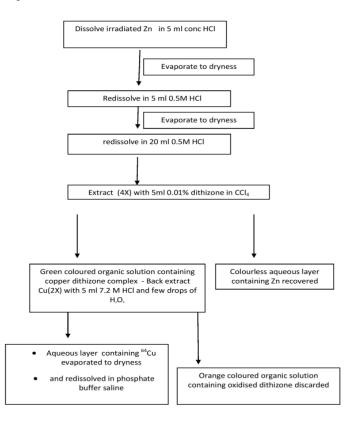


FIG. 2: Schematic of the radiochemical separation process

3. RESULTS AND DISCUSSION

3.3. Neutron Source

Neutron generators, cyclotrons and electron linear accelerators that could be used as a Compact Accelerator Based Neutron Source (CANS) are available as 'commercial off the shelf' varieties [9,10]. The accelerator neutrons produced via the ¹⁸O(p,n)¹⁸F route range from thermal to fast [11]. The unfolded neutron spectrum is shown in Fig 3 [11]. The neutron flux is anisotropic to the incoming proton beam.

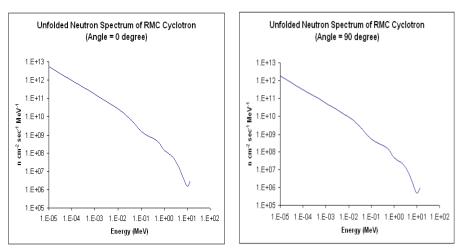


FIG. 3: Unfolded neutron spectrum [11]

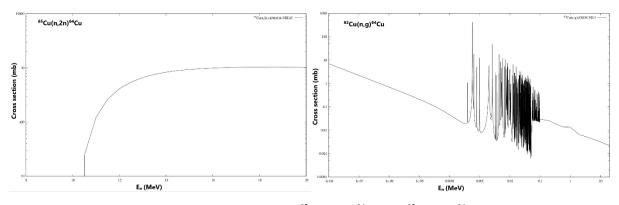


FIG 4: Excitation function of ${}^{65}Cu(n,2n){}^{64}Cu$ and ${}^{63}Cu(n,g){}^{64}Cu$

3.4. LSA ⁶⁴Cu

Correlating the neutron spectrum (Fig 3) and the excitation functions of 64 Cu produced via 65 Cu(n,2n) 64 Cu and 63 Cu(n,g) 64 Cu (Fig 4), it can be inferred that LSA 64 Cu is formed via a dual route 65 Cu(n,2n) 64 Cu + 63 Cu(n,g) 64 Cu in the irradiated natural Cu foil. The Table 2 shows that the average cumulative activity of LSA 64 Cu produced is 455 ± 26 Bq/g*microampere*h at the end of bombardment (EOB).

Irradiation time (h)	Target and weight (g)	⁶⁴ Cu (Bq/ g*microampere*h)
1.1	Cu (0.02)	431
1.2	Cu (0.022)	483
1.1	Cu (0.02)	452

TABLE 2: YIELDS OF LOW SPECIFIC ACTIVITY ⁶⁴Cu AT EOB

3.5. HSA ⁶⁴Cu

The radionuclides ⁶⁴Cu, ⁶⁷Cu, ⁶⁵Zn and ⁶⁹mZn co-produced via the various (n,x) routes [6] were identified via gamma spectrometry of the irradiated Zn foil. As seen from Table 3, the average yields of high specific activity ⁶⁴Cu is 861 ± 15 Bq/g*microampere*h at EOB. The level of co-produced ⁶⁷Cu was 3 orders less than the ⁶⁴Cu produced at EOB. The ⁶⁴Cu and ⁶⁷Cu coproduced are inseparable and the ratio of ⁶⁷Cu/⁶⁴Cu post EOB increases due to the differences in their half-lives (Fig 5). The radioisotopes ⁶⁴Cu and ⁶⁷Cu are a theranostic pair and ⁶⁴Cu can be used as a tracer to study the uptake of ⁶⁷Cu, as the biological behaviour of these isotopes *in vivo* is expected to be equivalent.

TABLE 3: YIELDS OF HIGH SPECIFIC ACTIVITY ⁶⁴Cu AT EOB

Irradiation time (h)	Target and weight (g)	⁶⁴ Cu (Bq/ g*microampere*h)
1.1	Zn (0.026)	879
1.2	Zn (2.1)	851
1.1	Zn (2.1)	855

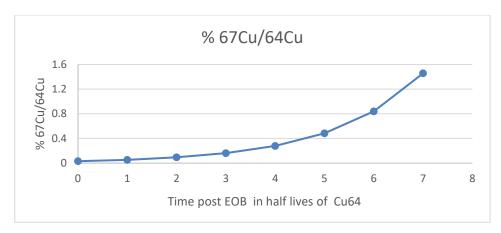


FIG 5: % 67Cu/64Cu post EOB

3.6. Separation of ^{64,67}Cu from irradiated Zn

The solvent extraction method is based on the selective extraction of Cu dithizonate into an organic solvent from a dilute acidic solution of the Zn target and back extraction of Cu into the aqueous phase. Dithizone is selective for Cu in the pH range 2–5, and for Zn in the pH range 6.5–9.5. The Fig 6 shows that the radionuclide impurities ⁶⁵Zn and ^{69m}Zn are not detected in the separated ⁶⁴Cu, indicating achievement of high radionuclidic purity. Shielding out the thermal neutrons will help in reducing the levels of coproduced ⁶⁵Zn, enabling easier handling of the irradiated Zn targets. High separation yields of > 90%, with high radionuclidic purity and good reproducibility was achieved.

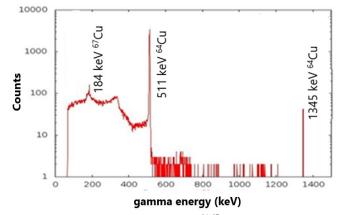


FIG 6: Gamma spectrometry of separated ^{64,67}Cu from the irradiated Zn foil

4. CONCLUSION

In this paper, we demonstrate an economical method of obtaining low and high specific activity 64 Cu via accelerator neutron bombardment of natural Cu and Zn. LSA 64 Cu is produced via a dual route 65 Cu(n,2n) 64 Cu + 63 Cu(n,g) 64 Cu in the irradiated natural Cu foil. Separation yields of > 90% of HSA 64 Cu inseparable from 67 Cu was obtained from the irradiated natural Zn foil. The potential use of a cocktail of mixed isotopes of the same element with different decays and energies may improve the therapeutic effect and is an interesting consideration to explore.

The growth and spread of medical cyclotrons is taking place across the globe, providing potential avenues for research scale production of 64 Cu via the accelerator neutrons. Utilization of these secondary neutrons requires no extra capital investment and holds promise for research scale production of other medically useful radioisotopes via various (n,x) reactions [12], without interrupting the regular production and supply of 18 F-radiopharmaceuticals.

ACKNOWLEDGEMENTS

The authors thank Dr Chanda Arjun, Board of Radiation and Isotope Technology and the colleagues at Radiation Medicine Centre for their technical support.

REFERENCES

- Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technology in cancer research & treatment 18 (2019) 1-10
- [2] Chakravarty R, Shetty P, Nair K.V, Rajeswari A, Jagadeesan K.C, Sarma H.D, Rangarajan V, Krishnatry R, Chakraborty S. Reactor produced [64Cu]CuCl2 as a PET radiopharmaceutical for cancer imaging: from radiochemistry laboratory to nuclear medicine clinic. Ann Nucl Med 34, 12 (2020) 899–910.
- [3] McCarthy D.W, Shefer R.E, Klinkowstein R.E, Bass L.A, Margeneau W.H, Cutler C.S, Anderson C.J, Welch M.J. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl med and biol. 24(1) (1997) 35-43.
- [4] Johnsen A.M, Heidrich B.J, Durrant C.B, Bascom A.J, Ünlü K. Reactor production of 64Cu and 67Cu using enriched zinc target material. Journal of Radioanalytical and Nuclear Chemistry 305(1) (2015) 61-71.
- [5] Gopalakrishna A, Chakraborty S, Chakraborty A. Low specific activity 64 Cu ions-bio-marker for melanoma. In Proceedings of the fourth international conference on application of radiotracers and energetic beams in sciences (2018).
- [6] Gopalakrishna, A., Suryanarayana, S.V., Naik, H., Dixit, T.S., Nayak, B.K., Kumar, A., Maletha, P., Thakur, K., Deshpande, A., Krishnan, R. and Banerjee, S.,. Production, separation and supply prospects of ⁶⁷Cu with the development of fast neutron sources and photonuclear technology. *Radiochimica Acta*, 106(7) (2018) 549-557.
- [7] Dasgupta, A. K., Mausner, L. F., Srivastava, S. C.: A new separation procedure for 67Cu from proton irradiated Zn. Appl. Radiat.Isot. 42, (1991) 371-376
- [8] Smith N.A, Bowers D.L, Ehst D.A. The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl. Radiat.Isot. 70(10) (2012) 2377-83.
- [9] Compact Accelerator Based Neutron Sources, IAEA-TECDOC-1981, IAEA, Vienna (2021)
- [10] Mausolf E.J, Johnstone E.V, Mayordomo N, Williams D.L, Guan E.Y, Gary C.K. Fusion-Based Neutron Generator Production of Tc-99m and Tc-101: A Prospective Avenue to Technetium Theranostics. Pharmaceuticals 14(9) 875. (2021) 1-19
- [11] Sathian, V., Phadnis, U.V., Sharma, D.N., Deepa, S., & Soni, P.S. Neutron spectrum measurement in a medical Cyclotron. IRPA 12: 12 International congress of the International Radiation Protection Association (IRPA): Strengthening radiation protection worldwide, Argentina: SAR. (2008).
- [12] Engle J.W, Birnbaum E.R, Fassbender M.E, John K.D, Nortier F.M. Parasitic isotope production with cyclotron beam generated neutrons. In Proceedings of the 20th international conference on cyclotrons and their applications, Vancouver (2013) 16-20