IAEA-CN301-78

Commissioning of operational radiation protection in Compact Proton Therapy Centers (CPTC) with small accelerators

Gonzalo F. Garcia-Fernandez¹, Eduardo Gallego¹, Jose M. Gomez-Ros² Alejandro Carabe-Fernandez³, Alejandro Bertolet-Reina⁴, Hector R. Vega-Carrillo⁵, Karen A. Guzman-Garcia⁵, Lenin E. Cevallo-Robalino⁶

(gf.garcia@upm.com)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

INTERNATIONAL CONFERENCE ON

Faculty Disclosure

Х	No, nothing to disclose
	Yes, please specify:

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)

Scope

Purpose

Operational Radiation Protection (RP) in compact proton therapy centers (CPTC)

Research activities and main results

The ten recommendations

Summary

International Conference on Accelerators for Research and Sustainable Development

Slide 2/25

The advent of Protontherapy in Spain

Number	Acelerator	Rooms	Footprint (Aprox)	Operation
1	Synchrocyclotron	1	360 m ²	Dec 2019
2	Synchrotron	1+(1)	800 m ²	March 2020

CT. Hutala, Maritil CT. 1

is and the island of Orac Canada

BURTANARUE DE VELOPMENT GOALE / 2020 AGENDA

Chevel Impact

Typical size MPTC (4 rooms) > 3000 m²

In October 2021, the Americia Ortage Foundation arranged with the Spanish government and several autonomous communities to donate 200 million euros to install ten proton accelerators in the public health automa .

Particularly suitable for treating cancer in children and hard-to-reach tumours, proton therapy is the most precise and advanced technology available to fight cencer through redictherapy. With the incorporation of these first ten devices, the Spanish health care extern will be in the leading group of countries with this technology and will have the capacity to treat thousands of patients close to home every year.

and Sustainable Development

IAEA, Vienna, Austria

Acelerator E		Energy of F	of Protons Beam Delivery		Proton Field	Gantry Rotation
Synchrocycle	otron	Fixed (235	MeV)	PBS	Continuous*	220º
Synchrotro	on	Variable (70-	230 MeV)	PBS	Pulsed	360°
2017/18→0	2020→ 2	(private)	2025?→13	3 (11 public)	To infinity and b	eyond
EA-CN301-78	Slide 3/25	Speak	er name: Gonzalo Ga	rcía (UPM)	International Accelerate	Conference on rs for Research 23-27 I

Origin and challenges of radioprotection in proton centers

Proton interactions \rightarrow Neutron Fields Neutron interactions \rightarrow Impact in facility

Protons with energies between 70-230 MeV (intranuclear cascade + evaporation)

Neutrons interaction with matter

- Elastic scattering X (n,n) X
- Inelastic scattering X (n,n') X'
- Radiative capture ${}^{A}X(n,\gamma){}^{A+1}X$

For high-energy neutrons (> 8 MeV), reactions such as (n,2n) or (n,n+p) are possible

Each isotope exhibits its own cross section.

Neutron-induced activation processes

- Inelastic collisions (spallation processes)
- Neutron capture (n, γ)

Impact of neutrons in compact facilities

<u>Material in walls</u> What type of concrete is the best option for CPTC shielding and barriers → Shielding, decommissioning and radioprotection

- Geometric and constructive factors
- New Materials
- New nuclear data libraries

<u>Elements of the facility</u> (accelerator, beam components) \rightarrow Long term decommissioning, release strategy and personal radioprotection

<u>Air and water activation</u> (cooling, others and ground water) \rightarrow Release strategy and personal radioprotection

IAEA-CN301-78

Slide 4/25

Purpose

Commissioning of proton centers: encompass radiation protection aspects

Operational radiation protection (RP): staff and general public. Shielding and barriers, activation, monitoring (personal dose, ambient equivalent dose...)

Compact proton therapy centers: CPTC (small size, 1 or 2 treatment rooms)

Study of several aspects of operational radiation protection focused in CPTC

Trends

- 1. Compact and standard facilities
- 2. Small size accelerators
- 3. New delivery modes
- 4. Changes in regulations

IAEA-CN301-78

....

RP in proton centers: Starting Point

Workload (nA-h/year) \rightarrow Estimation of Proton fields (annual dose) \rightarrow Beam losses

COMPLEX INPUT: Number of patients x Number of Fields x Time per field x Current x Working days x (1h/60 min)

Factors of use and mix operation

450 patients/year, 17.000 sessions, 2 Gy/patient Patient-case indications

Regulatory limits

General Public, 1 mSv/year (Spain) Exposed workers, 20 mSv/year (Spain) Instantaneous dose rate, IDR, hourly: 10 uSv/h (Spain)

- Occupancy factors (T) → IAEA, 2006
- Types of beam: Clinic, Q&A, Maintenance
- Dose Rates: year, hour, instantaneous, facility
- Conservative magnitudes \rightarrow Ambient Dose Equivalent, H*(10) (Hp*(10))

Assumptions and uncertainties (conservatives, 20y)

Compositions (nuclides) - Interactions – Workload → Delivery mode

Accelerators2022

Design barriers and shielding against neutron and gamma radiation

MC methods

barriers

expandable

barriers

CPTC:

Expansion to new types of centers planned for the Public System

IAEA-CN301-78

Slide 7/25

Speaker name: Gonzalo García (UPM)

Study of different materials in barriers

Attenuation plots with different types of concrete

Attenuation is essential but not enough

Radionuclide	Reaction channel	T _{1/2}
¹⁵² Eu	¹⁵¹ Eu (n,γ) ¹⁵² Eu	13.33 y
¹⁵⁴ Eu	¹⁵³ Eu (n,γ) ¹⁵⁴ Eu	8.8 y
¹³⁴ Cs	¹³³ Cs (n,γ) ¹³⁴ Cs ¹³⁴ Ba (n,p) ¹³⁴ Cs	2.06 у
⁶⁰ Co	⁵⁹ Co (n,γ) ⁶⁰ Co	5.3 y
⁴⁶ Sc	⁴⁵ Sc (n,γ) ⁴⁶ Sc	83 d
¹³³ Ba	¹³² Ba (n,γ) ¹³³ Ba	10.5 y
⁵⁴ Mn	⁵⁵ Mn (n,2n) ⁵⁴ Mn ⁵⁴ Fe (n,p) ⁵⁴ Mn	312 d
²² Na	²³ Na (n,2n) ²² Na ²⁷ Al (n,2p4n) ²² Na	2.6 y
¹³⁷ Cs	¹³⁶ Ba (n,γ) ^{137m} Ba → ¹³⁷ Cs ¹³⁷ Ba (n,p) 137Cs	30 у

Comparative of several materials (concretes)

Different materials in different places and mix barriers

	Attenuation	Activation	Building	Global Result
Portland	1	1	1	1,00
Hormirad	1,24	0,72	0,42	0,91
Colemanite	1,45	0,68	0,33	0,98
LAC 1	0,85	1,38	0,55	0,91
LAC 2	0,8	1,42	0,63	0,91

Compromise between attenuation, activation in components, and cost of building

Slide 8/25

Speaker name: Gonzalo García (UPM)

Impact of radiation on environment inside and around CPTC

Air activation

Neutron capture in ⁴⁰Ar: ⁴⁰Ar(n,γ)⁴¹Ar (Cross section ⁴⁰Ar, σ = 610 mb) Spallation processes on ¹⁴N and ¹⁶O atoms, with neutrons above 20 MeV of energy Air renewal rate, r (r > 6 RPH, $\lambda_{effective} = \lambda + r$), underpressure, treatment and humidity

Water activation + ground activation in soil

Spallation processes on O atoms, with neutrons above 20 MeV of energy Productions of same radionuclides as air, except ⁴¹Ar:

Long-lived isotopes: ³H and ⁷Be Short-lived isotopes: ¹¹C, ¹³N, ¹⁵O, ¹⁴O, ¹⁸F

Metallic components activation (accelerator parts, beam line elements,...)

Spallation, (n,x), and neutron capture, (n,γ) , processes

Long-lives isotopes yielded directly with protons

Many equipment and elements of the facility with natural Cu

Nuclide	Half-life	Reaction	Cross section (barn)	Isotopes	Half-life	Parent	Reaction	Reaction Product	Half-life
¹³⁴ Cs	2.06 year	¹³³ Cs(n,γ) ¹³⁴ Cs	29						
5000	E Queer	59Co(n, y)60Co	97	60Co	5.3 years		(n a)	64 C 11	12.7 hour
	5.5 year	60Ni(n,p)60Co	57				(11, γ)		12.7 11001
⁵⁹ Fe	44 days	⁵⁸ Fe(n,γ) ⁵⁹ Fe	1.15	57Co	271 days				
⁶⁵ Zn	244 days	64Zn(n,γ)85Zn	0.78			⁶³ Cu	(n,α)	⁶⁰ Co	5.3 years
514.4m	212 days	55Mn(n,2n)54Mn	0.91	58Co	70 days	69.17%			-
	oliz days	⁵⁴ Fe(n,p) ⁵⁴ Mn	0.59	1.100	0.000		(n, 2n)	64 C 11	12.7 hour
¹⁰⁸ Ag	127 year	¹⁰⁷ Ag(n, γ) ¹⁰⁸ Ag	36	⁵⁴ Mn	312 days		(11,211)	Gu	12.7 11001
¹¹⁰ Ag	249 days	¹⁰⁹ Ag(n, y) ¹¹⁰ Ag	91						
¹²³ Sn	129 days	122Sn(n, y)123Sn	0.15	⁶⁵ Zn	244 days	65.0	(n,p)	65Ni	2.5 hours
¹²⁵ Sn	9 days	¹²⁴ Sn(n, γ) ¹²⁵ Sn	0.13	10000000		05CU			
22b1a	2.6.0007	²³ Na(n,2n) ²² Na	0.017	²² Na	2.6 years	30.83%	(n, n)	65 7 n	244 days
	2.0 year	²⁷ Al(n,x) ²² Na	0.010		,		(p,n)	ZII	244 Uays

Spallation processes with high energy neutrons (En>20 MeV) in Oxygene (¹⁶ O)								
Target	Reaction	Cross section (mb)	Nuclide yielded	Half-life				
¹⁶ O	¹⁶ O(n,x) ³ H	30	зН	12.3 y				
¹⁶ O	16O(n,x)7Be	5	⁷ Be	53.3 d				
¹⁶ O	¹⁶ O(n,x) ¹¹ C	5	¹¹ C	20.4 m				
¹⁶ O	16O(n,x)13N	9	¹³ N	1.18 m				
¹⁶ O	16O(n,x)15O	40	¹⁵ O	2.04 m				
Spallation processes with high energy neutrons (En>20 MeV) in Nitrogen (14N)								
opunation p	rocesses with his	(14N)	(En>20 Wev)	in Nitrogen				
Target	Reaction	(14N) Cross section (mb)	Nuclide yielded	in Nitrogen Half-life				
Target	Reaction	(14N) Cross section (mb) 30	Nuclide yielded ³ H	Half-life				
Target 14N 14N	Reaction ¹⁴ N(n,x) ³ H ¹⁴ N(n,x) ⁷ Be	(14N) Cross section (mb) 30 10	Nuclide yielded ³ H ⁷ Be	Half-life 12.3 y 53.3 d				
Target 14N 14N 14N 14N	Reaction 14N(n,x) ³ H 14N(n,x) ⁷ Be 14N(n,x)11C	(14N) Cross section (mb) 30 10 10	Nuclide yielded ³ H ⁷ Be ¹¹ C	Half-life 12.3 y 53.3 d 20.4 m				

tainable Development

12.7 hours

12.7 hours

IAEA-CN301-78

Slide 9/25

Air activation in CPTC (example)

Evaluation of effects

Monte Carlo methods

Yearly effective doses and activity concentration limits from activated air

- Air renewal minimum: 6 CPH (each 10 minutes)
- No decay and no dilution considered (worst scenario)

10⁹ stories Statistical uncertainty < 5%

Nuclear models (E>150 MeV) INC → CEM03.03 EVM → GEM

Nuclear data: ENDF/B (version VII.1) JEFF (version 3.3), TENDL 2017 and 2019

S(α,β) Model in PE and H ENDF71SaB (ENDF/B-VII.0)

Analytical methods

ICRP PUBLICATION 127 (2014)

AR = 33.8 Bq/m³

GTR1 = 12.5 Bq/m³

GTR2 = 48.7 Bq/m³

Legal limit (IAEA) = 200 Bq/m³

Analytical methods underestimate air activities in some nuclides (use of averaged cross sections)

IAEA-CN301-78

Slide 10/25

Speaker name: Gonzalo García (UPM)

Air activation in CPTC

Mitigation strategies for air activation

Ventilation requirements to prevent that the concentration of the radioactive gases (³H, ¹⁵O, ¹³N, ⁴¹Ar) and ozone produced during irradiation remain below the health safety limits and the legal radioactive atmospheric release criteria

Design of Ventilation System

<u>General</u>

Variable flow system ventilation. During irradiation, the ventilation System must be stopped, but once it is finished, postirradiation air must be renewed as quickly as possible, considering the maximum speed recommended in ducts.

Air renewals rate

 $\begin{array}{ll} \mbox{Cyclotron room, CPH} = 10/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Treatment room, CPH} = 10/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 6/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 0/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbox{Technical part gantry (gantry pit) CPH} = 0/\mbox{hour} & $\lambda_{effective} = \lambda + r$ \\ \mbo$

<u>Pressure cascade</u> (avoid a flow of air from inside to outside of the bunker)

Underpressure inside the bunker

Differential pressure between maze/treatment room (10/15 Pa) and accelerator room (< -40 Pa)

Continuous readout and checking of pressures in rooms

Soil activation in CPTC Mitigation strategies for soil activation

- Minimal slab thickness 50 cm
- Avoid water under the foundations slab
- Waterproofing sheet, expansion joint and geotextile under foundations to mitigate neutrons interactions with ground water and natural soil
- Soil characterisation with gamma spectrometry (substitution of upper layer)
- Building material characterisation (cement, sand, gravel, ...) via gamma spectrometry

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Assessment of personal dosemeters for proton centers (Monte Carlo) Dosemeters, active (DLD)

Dosemeters, Passive, Albedo (TLD)

Dosemeters, Passive, Track etch (CR39)

- Correction factors for electronic dosimeters up to a factor 9
- Smaller corrections for track etch, and médium for albedo, depending ofnthe location

Garcia-Fernandez et. al., ISSSD XX 2020

H _p (10) _{cal} /H _p (10) _{ref}	W-a inside	W-a outside	S-g inside	S-g outside	TCR
Active - DLD	8.4	8.9	3.2	4.7	9.6
Pasive - Albedo	2.7	1.5	1.2	1.8	1.3
Pasive – Track	0.7	2.9	0.8	1.6	2.4

Selection of personal neutron dosemeter most suitable for CPTC

> International Conference on Accelerators for Research and Sustainable Development

Slide 13/25

Impact of new developments (Evolution of delivery Methods)

PT.1 \rightarrow Passive methods \rightarrow Scattering \rightarrow High production of secondary neutrons

PT.2 → Active methods → Pencil Beam Scanning (PBS) → IMPT (Intensity modulated proton therapy)

Basic workload

 $PT.3 \rightarrow In-development methods$

- Flash-therapy → Disruptive
- Mini-beams
- PMAT (Proton monoenergetic arc therapy) → Adaptative
- Blended modes (active+passive)

Yap et. al., 2014, Phys. Med. Biol. 59 2457

Slide 14/25

Speaker name: Gonzalo García (UPM)

Impact of new delivery techniques on RP

New delivery modes: Special consideration (IAEA Tec-Doc 1891, 2020)

PMAT (experimental)

Proton Monoenergetic Arc Therapy (Dr. Carabe- Fernandez)

Dosimetric plans PMAT/IMPT

Carabe-Fernández et al., 2020, Physics Medical and Biology, 65:165002 Bertolet and Carabe-Fernández, 2020, Physics Medical and Biology, 65:165006 Set-up for experimental measurements, H*(10)

International Conference on Accelerators for Research and Sustainable Development

Slide 15/25

IAEA-CN301-78

Impact of PMAT on RP

Experimental results, H*(10)

Garcia-Fernandez et. al., 2021, IRPA15

PMAT could have a non-negligible reduction of secondary neutrons, with a direct positive impact on operational radiation protection.

This is an experimental mode of Proton Arc Therapy not commercial

Simulations with MCNP6.2/GEANT4

MPTC (isochronous cyclotron)

Garcia-Fernandez et. al., 2021, IRPA15

Position	Distance from source (cm)	MCNP6 WENDI-II Response (µSv/h)	MCNP6 Prescila Response (µSv/h)	MCNP6 Η*(10) (μSv/h)	Experimental measurements With Prescila H*(10) (mSv/h)
1	100	89±4	86±4	88±3	82±7

Differences <10%

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Impact of Pr-FLASH on RP

Some (relevant) uncertainties at this stage (linked with RP)

Pr-FLASH involve two main methods (transmission or Bragg-Peak) with specific features

Different dose per pulses (papers with rates from 10 Gy/s to 300 Gy/s). Pulsed Neutron Fields (PNF)

Number of treatments to be performed with each mode: FLASH, PMAT, IMPT, others

How and where the beam will be stopped with transmission Pr-FLASH?

How the beam will be conformed with Bragg-Peak Pr-FLASH?

Instantaneous Dose Rate (IDR) limits in some national regulations (critical place: Treatment Control Room, occupancy factor T=1)

Challenges

Difficult to quantify the impact in new PTC (disruptive) (but that will be very relevant) Adapting existing facilities Verification and measurements ...significance increase in neutron.

Jolly et al., 2020, Physica Medica, 78:71-82

...neutron dose and radiation shielding should be carefully considered.

Zou et al., 2021, Radiotherapy and Oncology, 155:212-218

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Some alternatives

Parametric workload Monte Carlo workload

Gupta et. al., POP04, PTCOG 2020 online

Simulations with Monte Carlo

CPTC (synchrocyclotron)

Garcia-Fernandez et. al., 2021, Applied Radiation and Isotopes, 169, 109279

Slide 18/25

IAEA-CN301-78

Dose: 6 Gy

IMPT SOBP 141.7 – 89.5 MeV

PMAT Monoenergetic 117.5 MeV

Pr-FLASH Transmission 210 MeV, 500 ms, 12 Gy/s Stopped in water phantom 40x40x40 cm³ (behind circular phantom)

Speaker name: Gonzalo García (UPM)

Simple case with MCNP6.2® (Case 1)

10⁹ stories Statistical uncertainty < 5%

Nuclear models (E>150 MeV) INC → CEM03.03 EVM → GEM

> Nuclear data: ENDF/B (version VII.1) JEFF (version 3.3), TENDL 2017 and 2019

S(α,β) Model in PE and H ENDF71SaB (ENDF/B-VII.0) Hourly Dose Rate (HDR) uSv/h

Treatment Control Room (TCR)

Occupancy factor, T=1

IMPT 5.1 uSv/h (baseline 1)

PMAT 2.3 uSv/h (0.45 under baseline)

Pr-FLASH 7.8 uSv/h (1.53 over baseline)

Case 2: Dose rate 25 Gy/s, transmission method, 230 MeV

IDR = 18 uSv/h > 10 uSv/h in some areas

Garcia-Fernandez et. al., 2022, Radiation physics and chemistry, under review

Dead time of radiation monitors (5-10 microsecond) Underestimations

PHITS, 2021, tutorial

Another way to make more realistic assumptions

Experimental measurements to better assess the impact of new delivery techniques in development

Slide 19/25

Carry-out of experimental measurements

Slide 20/25

IAEA-CN301-78

Extended-range rem-meters Characterizing response of devices

To carry out experimental measurements inside treatment rooms is necessary extended-range remmeters (PNF with some new delivery methods)

Outdoor is possible use conventional devices

Garcia-Fernandez et. al., 2019, Applied Radiation and Isotopes, 152, 105-126

passives

Always it is highly recommended to support measurements from active equipment with reliable data (passive monitors, Bonner spheres,...).

No dead time

٠

- Low sensitivity (increasing time of exposition)
- Insensitive to photons

#Accelerators2022

23-27 May 2022

IAEA Vienna Austri

ALARA (as low as reasonably achievable)

Assumptions should be *conservative but realistic* (and <u>based on updated information</u>)

Assumptions are not forever but almost (20 years)

Some improvements mitigate significantly the impact of neutrons in PT facilities

International Conference on Accelerators for Research and Sustainable Development

Sli

IAEA-CN301-78

Slide 22/25

The Ten "Commandments" of RP in **Compact Proton Therapy Centers (CPTC)**

- Select a suitable site and location for facility
- 2. Design barriers and shielding against neutron and gamma radiation
- 3. Use Monte Carlo simulations and check with analytical methods (or if you prefer, the opposite)
- Choose appropriate materials in barriers 4.
- 5. Review the impact of radiation on environment
- Anticipate changes in assumptions and future 6. developments
- 7. Place the right radiation monitor in the right place of the facility
- Pick suitable personal dosemeters 8.
- 9. Assume uncertainties but collect much as information as possible (soil, cement, concrete,...)
- 10. Carry out experimental measurements

Contributions to the commissioning of operational radiation protection in CPTC

IAEA-CN301-78

Slide 23/25

Speaker name: Gonzalo García (UPM)

and Sustainable Development

Summary

- 1. The design of some **aspects of operational radiation protection was developed from 2018 until now**, within the research project Contributions to operational radiation protection and neutron dosimetry in compact proton therapy centers.
- 2. Currently, radiological protection in PTCs is carried out with **very conservative assumptions and high safety margins**, however, developments in proton therapy could have a huge impact in the operational radiation protection. Some developments could strongly change inputs in the workload and probably will rise the requirements.
- 3. The aim of this work was to present a commissioning process of the operational radiation protection of Compact Proton Centers, **summarized in ten main recommendations**, achieved in the activities mentioned above, **and lined up with requirements of Nuclear Authority (CSN)**. The goal of this process is to guarantee the compliance of dose limits for clinical and technical staff, and general public.
- 4. Considering the permanent evolution in many aspects of proton therapy, international recommendations (ICRP Publication 127, IAEA TecDocs), should be periodically **updated and harmonized**.

The development of more efficient radiation protection measures could, significantly, optimize the thickness of the barriers, lowering the cost and size required to implement a proton therapy center, and in this way, the access to proton therapy could be easier for more countries and patients.

#Accelerators2022 23-27 May 2022

Thank you for your attention

Muchas gracias

Gonzalo García Assistant professor and researcher Universidad Politécnica de Madrid (UPM) gf.garcia@upm.es

Acknowledgements

Nuria García Arranz (UPM) Oscar Cabellos (UPM) Los niños de la UPM (Luisfe y Antoño)

Nuclear Safety Chair Federico Goded, CSN-UPM

Roberto Méndez Villafañe (Ciemat) Ana Romero (Ciemat)

Erick Diffenderfer (UPenn)

Santiago Sánchez Cervera (CSN) Arturo Pérez Mulas (CSN) Marisa Tormo (CSN)

Alejandro Mazal (QuirónSalud) Juan Castro (QuirónSalud) Juan Antonio Vera (QuirónSalud)

Josep M. Martí (CUN)

Eduardo Fuentes (Bioterra)

Ricardo Otero (IBA-Spain)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

- Proton therapy (PT): External radiation therapy with accelerated proton beams at kinetic energies between 70 and 230 MeV.
- Advantages: Dosimetric improvements in the treatment of certain types of tumors and clinical cases due to the proton dose deposition curve.
- Beneficial for deep tumours, tumours surrounded by radiosensitive organs and certain tumours in children
- Over 100 active facilities and over 250.000 patients treated. PT in Spain: First center Dec-19, second Apr-20, third forecast 2022.

IAEA-CN301-78

Slide e/25

1.2 Sources of radiation $p \rightarrow n$ (+ gamma)

S

IAEA-CN301-78

Slide a/25

Speaker name: Gonzalo García (UPM)

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022

23-27 May 2022

IAEA, Vienna, Austria

Proton interactions → Neutron Field

Field Neutrons interactions \rightarrow impact in facility

- 1. Secondary dose inside TR (unwanted)
- 2. Ambient dose outside TR \rightarrow shielding
- 3. Activation in walls and enclosures
- 4. Skyshine
- 5. Water and water table activation
- 6. Activation components and others

Nuclear Data and Physical Model

Slide a/25

IAEA-CN301-78

[15, Lee]

Speaker name: Gonzalo García (UPM)

Selection of Nuclear Data and Physic Model (E>150 MeV) in MCNP6 (Uncertainties)

[16, Adapted from Solc]

Indications	Min. Range (g/cm²)	Max. Range (g/cm²)	Tumor Volume (cm³)	Field Size (cm²)
Head & Neek	8	18	600	7.7 x 7.7
Head & Neck	2	12	600	7.7 x 7.7
Lung Tumor	8	20	810	7.9 x 7.9
	4	17	810	7.9 x 7.9
Dataia Caraama	20	32	4040	10.1 x 10.1
Pervic Sarcoma	15	27	1216	10.1 x 10.1
Dediateia	8	18	2460	18.6 x 18.6
Pediatric	2	12	3460	18.6 x 18.6
QA – low range	4	14	1000	10 x 10
QA – medium range	13	23	1000	10 x 10
QA – high range	22	32	1000	10 x 10

I Activitios

Indications	Dose for treatment (Gy)	Dose for QA (Gy)	Total dose (Gy)	# patient/year	Annual Dose at Isocenter (Gy)
Head & Neck	72	6	78	130.5 (30%)	10180
Lung Tumor	60	6	66	130.5 (30%)	8614
Pelvic Sarcoma	80	6	86	130.5 (30%)	11224
Pediatric	70	6	76	43.5 (10%)	3306
QA – low range			4*		1200
QA – medium range			4*		1200
QA – high range			4*		1200

*Total	dose p	per day
--------	--------	---------

	Indications	Min. Range (g/cm ²)	Max. Range (g/cm ²)	Field size (cm ²)	Annual Dose (Gy)	w(1Gy) (nA.s)	w _{iso} (nA.h)
	Head & Neck	8	18	7.7 x 7.7	5090	7.29	10.31
		2	12	7.7 × 7.7	5090	6.27	8.87
Ities		8	20	7.9 x 7.9	4307	8.39	10.04
E G	Lung Tumor	4	17	7.9 x 7.9	4307	8.36	10.01
g	Sarcoma	20	32	10.1 x 10.1	5612	15.42	24.04
		15	27	10.1 x 10.1	5612	14.89	23.22
	Pediatric	8	18	18.6 x 18.6	1653	42.09	19.33
_ [2	12	18.6 x 18.6	1653	36.46	16.74
] Ites	QA - Iow R	4	14	10 x 10	1200	12.04	4.013
- Gi	QA - medium R	13	23	10 x 10	1200	13.78	4.593
δL	QA – high R	22	32	10 x 10	1200	15.75	5.250

Sum = 136.42 nA.h

Slide a/25

Speaker name: Gonzalo García (UPM)

Clinical Indications	Max range (g/cm²)	Max E range (MeV)	Average E (MeV)	Percentage	
Head & Neck / ORL	18	160	145	10%	
	12	130	145	10/0	
Lung/Breast Tumor	20	170	162	23%	
	17	155	105		
Pancreas / Leaver	20	170	162	1.49/	
	17	155	105	14/6	
CNS	18	160	145	208/	
	12	130	140	2076	
Pelvic Sarcoma (including Prostate)	32	225	202	09/	
	22	180	205	a7e	
Pediatric	18	160	145	179/	
	12	130	145	1//0	

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Slide a/25

International Conference on and Sustainable Development

IAEA-CN301-78

Slide 7/25

Speaker name: Gonzalo García (UPM)

Accelerators for Research

Componentes principales (fracciones atómicas) y densidad					
Elemento	Portland (estándar)	Hormirad (hierro)	Colemanita (hidrógeno)	LAC1	LAC2
н	0.1688	0.1180	0.8912	0.0072	0.0075
с	0.0014	0.0016	0.0003	0.0891	0.0872
0	0.5625	0.5625 0.5292		0.4777	0.4921
Fe	0.0043	0.2736	5.0963E-5	0.0006	0.0006
Са	0.0187	0.0309	0.0034	0.4051	0.3405
Si	0.2041	0.0263	0.0012	0.0124	0.0009
Mg	0.0014	0.0070	0.0006	0.0024	0.0016
Na	0.0118 0		0	0.0008	0.0008
В	0	0	0.0297	0	0
Densidad (g/cm3)	2.30	4.10	2.12	2.18	2.20

Componentes minoritarios e impurezas (fracciones atómicas)					
Elemento	Portland (estándar)	Hormirad Colemanita (hierro) (hidrógeno)		LAC1	LAC2
Co (ppm)	2.1900E+1	2.1900E+1	2.1900E+1 2.1900E+1		0.2500
Eu (ppm)	1.0800	1.0800	1.0800 1.0800		0.0081
Cs (ppm)	3.2100	3.2100 3.2100		0.0520	0.0100
AI	0.0214	0.0070 0.0003			
к	0.0057	0.0013	7.2813E-5		
Mn	0	0.0001	0.0001 0		
Ti	0	0.0009	0		
v	0	0.0002	0		
S	0	0.0007	8.0682E-6		
Р	0	0.0027	0		
Sr	0	0	4.1300E-5	0	0

IAEA-CN301-78

Slide e/25

Speaker name: Gonzalo García (UPM)

Difficulties in personal neutron dosimetry

- Neutrons always together with (mostly strong) gamma fields
- Large energy range: 9 orders of magnitude
 - Thermal 0.025 eV to 100s of MeV
- Need to measure dose equivalent
 - weighting factor dependent on neutron energy
 - fast neutron much more harmfull than thermal neutron (per deposited energy)
- Easy detection of thermal neutrons, however
 - Least harmfull
 - Original neutrons are fast

IC2017n Irradiation fields

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Dosemeter, active (DLD)

- Active electronic dosimeter with 3 Si diodes
 - With hydrogen rich convertor for fast + highenergy neutrons
 - With ⁶Li convertor for thermal neutrons
 - Without convertor for photons

Dosemeters, Albedo (TLD)

- Passive dosimeter with 2 pairs of LiF thermoluminescent detectors
 - Combination of 6LiF and 7LiF to distinguish neutron and photons
 - One pair to measure incoming thermal neutrons
 - One pair to measure backscattered fast + high energy neutrons
- Workplace specific empirical algorithm to combine 4 detectors

Speaker name: Gonzalo García (UPM)

Dosemeters, Track etch

- Passive dosimeter with special polymer (CR-39, PADC) ۲
 - Recoil protons create broken polymer chains •
 - Tracks can be visualized under microscope by chemical etching •
- Relatively good energy response

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-78

Slide e/25

Speaker name: Gonzalo García (UPM)

$$\Delta = \int_{E_{low}}^{E_{up}} \Phi_E(E) \ \delta_{\Phi}(E) \ dE$$

Theory (area magnitude) Ambient Equivalent Dose

$$H^*(10) = \int h_{\phi}(E) \cdot \phi(E) \cdot dE$$

Reality (rem-meters) $R(E) = C \int r(E) \cdot \phi(E) \cdot dE$

- $r(E) \rightarrow absolute response$ (counts·cm²)
 - C → calibration factor (Sv/counts)

Sensitivity	
$0.84 \left(\frac{cps}{\left(\frac{\mu Sv}{h}\right)}\right) Cf^{252}$	
Energy Range	
25 meV – 5 GeV	
Dose Kange	and the second second
$0.01\left(\frac{\mu Sv}{h}\right) - 100\left(\frac{mSv}{h}\right)$	
Neutronic Field	-
Continuos	
LUPIN 5401 (BF ₃)	
Sensitivity	
$0.6\left(\frac{cps}{\left(\frac{\mu Sv}{h}\right)}\right) Pu^{239}/Be^{9}$	
Energy Range	
25 meV – 5 GeV	
Dose Range	10000
$10~\left(\frac{nSv}{h}\right) - 100~\left(\frac{mSv}{h}\right)~Cf^{252}$	
Neutron Field	
Pulsed	
Garcia-Ferna	ndezetal 2019 A

WENDI-II (He-3)

Prescila

Speaker name: Gonzalo García (UPM)

IAEA-CN301-78

Slide e/25

Speaker name: Gonzalo García (UPM)

Performances of detectors (rem counters) in pulsed neutron fields:

Dead time effects (↓)

Neutrons <u>thermalization and diffusion time</u> (TDT) in the moderator (个)

The reference quantity for dead time correction is the Dose Per Pulse (DPP)

	Instrument	Half response burst dose D _{half} [nSv]
$D_{meas} = \frac{D_{ref}}{1 + (D_{ref}/D_{half})}$	LUPIN BF3 LUPIN ³ He LB 6419	1808 182 28
D_{holf} is the reference dose per pulse that causes an underestimation by a factor 2	WENDI II BIOREM LB 6411 Studsvik 2202D	42 79 38 27
The correction works on the single burst. To apply it the detector must resolve each burst	RadEye Harwell N91 Linus Cramal31 LIULIN	25 19 6 8 53

Caresana, M. et. al., 2022, Presentation at Neudos 14 (Krakow)

International Conference on Accelerators for Research and Sustainable Development

IAEA-CN301-78

Slide e/25

IAEA-CN301-78

Slide e/25