STUDY OF SILVER NANOPARTICLES UPTAKE BY *Helianthus annuus* CROP IN SALINITY CONDITIONS

Anja Kavčič², Mitja Kelemen³, Paulo Fernandes Costa Jobim⁴,

Carla Eliete Iochims dos Santos¹,

Primoz Pelicon³,

Primoz Vavpetic³,

Katarina Vogel-Mikus²

¹Federal University of Rio Grande , Brazil; ²University of Ljubljana, Slovenia; ³ Josef Stefan Institute, Slovenia; ⁴Federal University of Health Science of Porto Alegre, Brazil

INTERNATIONAL CONFERENCE ON **ACCELERATORS FOR RESEARCH** AND SUSTAINABLE DEVELOPMENT From good practices towards socioeconomic impact Marian management of the state of the state

23–27 May 2022

IAEA Headquarters, Vienna, Austria

Agriculture

Nanoparticles

Interdisciplinarity

Sustainability

Accelerators

FURG DA PATRULHA

Food production: worldwide problem → agriculture and sustainable development

How will be possible to feed 10 bilion of people in 2050?*

*https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-102-population-food-security-nutrition-and-sustainable-development/

Population increase

Agricultural production increase (1960s)

Food systems:

- Exceeding planetary boundaries for resources;
 - Producing food loss and waste.

*Food (agrifood) systems: climate change, land degradation, biodiversity loss, pollution...

"Sustainable food system: ensures food security and nutrition for all without to compromise economic, social and environmental aspects which could affect food security and nutrition for future generation."

*https://www.fao.org/food-systems/en/

• How could we to contribute to solve such important problem?

• Is it possible to decrease those impacts caused by agrifood production systems and to guarantee nutrition and food and

environment safety?

To improve the farming methods: drones, mechanized and precision agriculture, different cultures with technology use.

Nanotechnology

Nanoparticles and agriculture

Nanoparticles (NPs): materials at nano scale (size ≤ 100 nm)

Properties: antibacterial, antifungal, anti-inflammatory...

Farmacology (sun protector, make up, lotions, drug delivery, medicine...); Industry (textil, toys, plastic, catalysts)

> Agriculture: seed germination; fertilizer; controled release of pesticides; increase the capacity of nutrient uptake by plants...

Where do the NPs go after their use at industries and field???

IAEA-CN301-115

interaction with flora and fauna

Unsolved questions:

- ✓ Accumulation of NPs in the environment;
- ✓ NPs uptake by plants and their dynamic in the plant tissues;
- ✓ Contribute to the food chain;
- ✓ Health or unhealth;
- ✓ Accumulation in the environment and live organisms: they still in NPs formulation or change to ionic species.

Properties and behavior of NPs depend on the size, shape, compositon...

Our aim:

To study the uptake and internalization of AgNPs by crop plants.

✓ Sunflower (Helianthus annuus) exposed to AgNPs and NaCl;

✓ PIXE as the main analythical technique to investigate the internalization of Ag in the plant tissues.

Sunflower:

- Used as food and feed crop plant (animals and humans: seeds, oil, honey...);
 - ✓ Hyperaccumulator of metals;
 - ✓ Good for soil nutrition;
- Main producers: Ukraine, Russia, European Union, Argentina...

Salinity:problematic for arid regions

- Stress parameter of the soil. It's related to bad practices of cultivation (excess of fertilizer + poorly conducted irrigation systems);
 - \checkmark High concentration of salts \rightarrow decrease of the nutrient absorption, causing limitation of crop growth especially in arid and semiarid regions of the world;
- ✓ It's not good for soil: decrease of water infiltration rates and increase the density.

Post-doc fellow (2017-2018)

- Biotechnical Faculty University of Ljubljana
- Microanalytical Center Josef Stefan Institute

Hydroponic

*AgNPs→ Ag nanopowder ~ 90 nm (Sigma Alderich)

Plants were harvested and samples were prepared for PIXE (60 μm thick, freeze dried), XRF (bulk samples), lipid peroxidation and pigments analysis (only for soil treatment).

- microPIXE measurements : MIC laboratory (Ljubljana, SL)
- 2 MV Tandetron;
- 3 MeV proton beam;
- SDD and Ge detectors;
- GeoPIXE software to fit the PIXE spectra.

Results – Hydroponic

5 ppm AgNPs

5 ppm AgNPs+ 100 nM NaCl

Results – Hydroponic Stem → Ag < LOD

Results - Soil

MicroPIXE: Ag concentration < LOD

Lipid peroxidation

Results - Soil

Reduction of carbohydrates production by plant → plant can die

23-27 May 2022

In summary:

Hydroponic

Soil:

Plant stress depends on soil type →biological parameters

- Continue the experiment;
 - Other concentrations;
 - AuNPs?
- Other plants and food chain;
- Seed germination expose to Ag and Au NPs.

- XANES (Hamburg):
- Ag stil as NPs in roots;
- Flutuations in the spectra suggested orgnic ligands to Ag, such as S and O.

Accelerators for Research and Sustainable Development

- Important and unique applications to different problems;
- Complementary techniques and experiments (depends on the study);
- Clean sample preparation methodology (less environmental pollution);
- Analysis of different materials (inorganic and organic) using one analythical technique (food and agri production chain).

Thank you

Univerza *v Ljubljani Biotehniška* fakulteta

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

