Electron Beam Technology for Preserving Quality Attributes of Mandarins for Enhancing Export Potential

Kendall A. Howie Suresh D. Pillai, PhD Sara Parsons

Texas A&M University Department of Food Science and Technology
National Center for Electron Beam Research

khowie1@tamu.edu suresh.pillai@ag.tamu.edu

Outline

Study Rationale and Background

Experimental Design, Objectives, and Research Questions

Methods & Results

Conclusions

Global citrus fruit production volume is ~31.2 million tons (Raimondo, et al 2018)

> Waste occurs at a rate of $^{\sim}30 - 60\%$

A large portion of waste is released into the environment

> **Environmental** and human health implications

Phytosanitary Treatment

 An official procedure for the killing, inactivation, sterilization, or removal of pests (FAO 2009)

- Current phytosanitary treatments for tephritid fruit flies in or on citrus fruit (ISPM 18 and 28):
 - Holding fruit at 1°C for 14 days, or
 - Irradiation at a minimum absorbed dose of 150 Gy (gamma-sourced)
- Current practices have issues involving fruit quality, costs, and the use of radioactive substances

Objectives

- To evaluate the effects of this proposed phytosanitary treatment on selected quality attributes of mandarin oranges
 - Color & visual appearance
 - Percent weight loss & extractable juice volume
 - pH

- Vitamin C content
- Determine maturity stages of the samples

Research Questions

1. What are the quality effects on mandarins when treated with the current phytosanitary dose of 150 Gy?

2. Can a less harsh cold storage period + lower eBeam doses hinder quality degradation?

Is cold storage **before or after** eBeam treatment, for **3 or 5 days**, more effective?

Does quality impact differ between Californian and Chilean mandarins?

Experimental Design

 Rationale: Simulate commercial conditions experienced by citrus

3 or 5 days @ 1°C 7 days @ room temp 3 or 5 days @ 1°C 14 days @ 7°C 7 days @ room temp

 Experimental hypothesis: A lower irradiation dose (50 Gy) coupled with a shorter cold storage period (3 or 5 days) will impart less quality damage

Treatment Designations

Treatment	Designation
0 Gy Control	0Gy
50 Gy Control	50Gy
150 Gy Control	150Gy
50 Gy, followed by 3 days of storage at 1°C	50Gy3D
50 Gy, followed by 5 days of storage at 1°C	50Gy5D
3 days of storage at 1°C, followed by 50 Gy	3D50Gy
5 days of storage at 1°C, followed by 50 Gy	5D50Gy

Methods and Results

eBeam Treatment

• 10 MeV, 15 kW linear accelerator

 Attenuation needed to reduce the number of electrons entering the fruit in order to achieve low target doses

Attenuated

Dosimetry

- Dose mapping helps ensure that the entire product receives the necessary dose
- Measured using L-a-alanine dosimeters

Dosimeter placement

Target Dose (Gy)	Location	Absorbed Dose (Gy)	DUR*	
50	Тор	58.33 ± 24.85		
	Middle	49.00 ± 13.89	1.76	
	Bottom	86.33 ± 49.80		
150	Тор	186.33 ± 61.09	1.16	
	Middle	161.33 ± 70.21		
	Bottom	161.00 ± 42.15		
	Тор	50.00 ± 2.65		
50	Middle	45.00 ± 1.00	1.11	
	Bottom	49.00 ± 2.00		
50	Тор	208.33 ± 267.32		
	Middle	218.33 ± 295.89	1.62	
	Bottom	135.00 ± 137.71		

Color

IAEA-CN301-092

- 20 mandarins held throughout storage
- Citrus Color Index (CCI) value

$$CCI = (\frac{a^*}{L^* \times b^*}) \times 1000$$

No significant differences between treatment groups

Californian CCI Change/Timepoint

Chilean CCI Change/Timepoint

Percent Weight Loss

- 20 mandarins held throughout storage
- Reported as percentage of weight loss
- No significant differences between treatment groups

Californian Percent Weight Loss/Timepoint

Chilean Percent Weight Loss/Timepoint

Extractable Juice Volume

- Mandarins were juiced using a commercially available juicer
- No significant differences between treatment groups

Californian Juice Volume/Timepoint

Chilean Juice Volume/Timepoint

pH and Titratable Acidity (TA)

- 20 mL of fruit juice and an automatic titrator used to measure pH and TA
- TA used in maturity index calculation
- No significant differences seen between treatment groups

Chilean pH/Timepoint

Vitamin C Content

- Performed by the Integrated Metabolomics Analysis Core (IMAC) at Texas A&M University
- Performed using targeted liquid chromatography (LC-QQQ)
- No significant differences between treatment groups

Californian Vitamin C Content/Timepoint

Chilean Vitamin C Content/Timepoint

Maturity Index

- TA measurements were obtained in previous step
- Total Soluble Solids (TSS) (^oBrix) were determined using a digital refractometer

$$Maturity\ index = \frac{^{\circ}Brix}{TA}$$

No significant differences between treatment groups

Californian Maturity Index/Timepoint

Visual Appearance

Conclusions

- 50 Gy eBeam dose + 3 days of storage at 1°C best maintained visual quality and overall appearance
- Treatment at 150 Gy alone lead to the most visual deterioration

 Chile-harvested mandarins may be more susceptible to visual quality deterioration as a result of eBeam treatment

Thank you! Questions?

Acknowledgements

- Halos The Wonderful Company
- Mickey Speakmon at the National Center for Electron Beam Research
- Cory Klemashevich at the Integrated Metabolomics Analysis Core
- The Pillai Lab
- IAEA

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

