IAEA-CN301-110

Characterization of Nuclear Waste by Accelerator Mass Spectrometry

J.M^a. López-Gutiérrez^{1,2}, E. Chamizo¹, R. García-Tenorio^{1,3}, D. Sánchez-Jiménez¹, C. Vivo-Vilches^{1,2}, J.I. Peruchena¹

¹Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC, Junta de Andalucía), Spain.

²Departamento de Física Aplicada I, Universidad de Sevilla, Spain.

³Departamento de Física Aplicada II, Universidad de Sevilla, Spain.

(lguti@us.es)

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

The problem

IAEA-CN301-110 Slide 2/19

José María López-Gutiérrez

International Conference on Accelerators for Research and Sustainable Development

Nuclear facilities in Spain

- About 1300 radioactive facilities in Spain.
- They generate 30 m³ of
- residues and 300
- radioactive sources per year.

El Cabril

- Situation on December 31st, 2020:
 - <u>19397</u> m³ of very low activity residues stored.
 - 34927,19 m³ of low and medium activity residues stored (79.92% of the total capacity).
- Physical and chemical methods used for volume reduction.

Nuclear power plants in Spain

#Accelerators2022

IAEA, Vienna, Austria

Slide 3/19 IAEA-CN301-110

José María López-Gutiérrez

International Conference on erators for Research and Sustainable Development A better characterization of low level nuclear waste would allow to classify some residues as non or very little radioactive and treat them as standard residues.

International Conference on Accelerators for Research and Sustainable Developmen #Accelerators2022 23-27 May 2022

IAEA-CN301-110 Slide 4/19

How can we do it?

	Low specific activity	Half-life under 30 years
Low-level waste (LLW)	Beta-gamma emitters	Do not generate heat
conditions:	Alpha emitters at very low concentrations	Long-lived radionuclides at very low concentrations

Long-lived radionuclides in residues must be evaluated in order to classify them as LLW.

Some of these radionuclides cannot easily be detected by radiometric methods.

In these cases, only detection limits are established as their activity value.

Accelerator Mass Spectrometry (AMS) is a powerful tool for the detection of long-lived radioisotopes that can reduce strongly the detection limits reached for them with other techniques.

istainable Development

23-27 May 2022

IAEA-CN301-110 Slide 5/19

Accelerator Mass Spectrometry at CNA

International Conference on Accelerators for Research and Sustainable Development #Accelerators2022 23-27 May 2022 IAFA Vienna Austria

IAEA-CN301-110 Slide 6/19

Slide 7/19

IAEA-CN301-110

Centro Nacional de Aceleradores (CNA) -Sevilla

- Four accelerators:
 - 3 MV Tandem
 - 18 MeV protons and 9 MeV deuterons cyclotron
 - 1 MV Tandem for AMS
 - 200 kV Tandem for ¹⁴C AMS
- Other facilities:
 - PET/CT Scanner
 - for humans

José María López-Gutiérrez

- ⁶⁰Co Irradiator

International Conference on Accelerators for Research and Sustainable Development

SARA (Spanish Accelerator for Radionuclide Analysis)

Some long-lived radionuclides measured by AMS

Isotope	Decay	T _{1/2} (years)	Radiometric detection limit (mBq)	AMS detection limit
¹⁴ C	Q-	5730	17.14	10 ⁻⁴ mBq
³⁶ Cl	р	3.01×10^{5}	4	10 ⁻⁶ mBq (↔ ³⁶ Cl/Cl~10 ⁻¹⁵)
⁴¹ Ca	EC	1.03×10^{5}	15.00	0.1 mBq
¹²⁹	β⁻	1.56×10^{7}	17.14	10 ⁻⁶ mBq
²³⁷ Np		1.54×10^{5}	0.1	10 ⁻⁴ mBq
²³⁹ Pu		2.41×10^{4}		5x10 ⁻⁴ mBq
²⁴⁰ Pu	ά	6.5 × 10 ³	0.05	10 ⁻³ mBq
²³⁶ U		2.34 x 10 ⁷		10 ⁻⁶ mBq

Xiaolin Hou, Per Roos, Analytica Chimica Acta 608 (2008) 105-139. https://doi.org/10.1016/j.aca.2007.12.012.

IAEA-CN301-110 Slide 9/19 José María López-Gutiérrez

International Conference on tors for Research and Sustainable Development

Where are some these residues produced?

José María López-Gutiérrez

	LLW samples from normal operation
	Origin
Evaporator concentrate	Decontamination of liquids by evaporation
Resins	Cleaning of the reactor refrigeration water and other liquids
Dry sludge	Drying of the wet residues in containers or sinks

LLW samples from plants in decommissioning process

	Origin
Smears	Control of surface contamination in different materials
Concrete	Demolition of buildings

It is necessary to develop:

- Radiochemical methodology

Slide 10/19

- Measurement technique

IAEA-CN301-110

Relatively high activities expected!

New exclusive lab set up

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022

Some results

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-110 Slide 11/19

¹²⁹I in operation and decommissioning residues. Results.

Sample	Туре	Average ¹²⁹ Ι activity (μΒq/	/g) Sta	andard deviation ⁽¹⁾	
R-AS-07-04	Resin	210.0		54.2%	Large
R-AS-08-01	Resin	42.7		88.2%	devi
VD-10-01	Resin	4.63		51.6%	
R-VD-9-01 ⁽²⁾	Resin	40.3		6.7%	
R-VD-9-02 ⁽²⁾	Dry sludge	27.6		11.5%	
R-VD-9-03 ⁽²⁾	Dry sludge	18.2		11.2%	
Concrete from NPP	Concrete	0.010 - 5.73			
IAEA-375	Env. Soil	1.69		7.8%	
R-VD-9-02 ⁽²⁾ R-VD-9-03 ⁽²⁾ Concrete from NPP IAEA-375	Dry sludge Dry sludge Concrete Env. Soil	27.6 18.2 0.010 - 5.73 1.69		11.5% 11.2% 7.8%	

arge standard deviations for resins

López-Gutiérrez, J.M. Gómez-Guzmán, E. Chamizo, J.I. Peruchena, M. García-León, Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants, Nuclear Instruments and Methods B 294 (2013) 647-651. https://doi.org/10.1016/j.nimb.2012.07.046.

In many cases, values are not much higher tan environmental levels

> International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA. Vienna. Austria

IAEA-CN301-110 Slide 13/19

²³⁹Pu and ²⁴⁰Pu in operation residues

information on the type of reactor.

Supernatant: Pu adjustment to Pu(IV) with Fe(II) and NaNO₂.

ortant tool to detect the ed Pu in the

Sample	Туре	Average (²³⁹ Pu + ²⁴⁰ Pu) activity (mBq/g)	Standard deviation	Average ²⁴⁰ Pu/ ²³⁹ Pu	Standard deviation
R-AS-07-04	Resin	35.8	29.4%	0.246	0.4%
R-AS-08-01	Resin	8.9	71.3%	0.225	8.4%
AS-06-03	Resin	46.9	48.6%	0.355	1.1%
R-CO-09-05	Resin	1235.5	13.1%	0.359	3.5%
VD-10-01	Resin	7.9	10. <mark>8</mark> %	0.281	6.2%
R-TR-08-02	Dry sludge	7.06 (10)	_	0.1059 (32)	-

Large standard deviations for resins

J.M. López-Gutiérrez, J.M. Gómez-Guzmán, E. Chamizo, J.I. Peruchena, M. García-León, Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants, Nuclear Instruments and Methods in Physics Research B 294 (2013) 647-651.

> nternational Conference on ators for Research

Slide 14/19 IAEA-CN301-110

José María López-Gutiérrez

and Sustainable Development

²⁴³Am and ²⁴¹Am in nuclear residues

Very good agreement for isotopic ratio

		²⁴¹ Am	F ## e #(241 A ===)	²⁴³ Am	E ## e #/243 A #ee)		
NPP/sample	Aliquot	(pg/g)	(pg/g)	(pg/g)	(pg/g)	²⁴³ Am/ ²⁴¹ Am	Error
Cofrentes/0509	1	12.32	0.17	1.418	0.019	0.1151	0.0022
	1	0.4767	0.0041	0.05885	0.00051	0.1235	0.0015
Vandellós/0212	2	1.573	0.012	0.2081	0.0016	0.1323	0.0014
	1	3.658	0.040	0.1596	0.0018	0.04363	0.00069
Garona/1614	2	2.064	0.023	0.07834	0.00087	0.03796	0.00060
Almaraz/0315	1	0.1432	0.0012	0.01459	0.00012	0.1019	0.0012
A	1	6.714	0.060	0.6186	0.0056	0.0921	0.0012
ASCO/U115	2	6.902	0.067	0.6469	0.0063	0.0937	0.0013

Differences between aliquots for ²⁴³Am concentration

International Conference on Accelerators for Research and Sustainable Development

#Accelerators2022 23-27 May 2022 IAEA, Vienna, Austria

IAEA-CN301-110 Slide 16/19

Conclusion

AMS is a powerful tool for the characterization of normal operation and decommissioning LLW from nuclear facilities, as it can determine the activity of long-lived radionuclides which must be under certain levels in these materials.

Slide 18/19 IAEA-CN301-110

Thanks for your attention!

This project is founded by ENRESA

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

