IAEA-CN301-015

EFFECT OF E-BEAM IRRADIATION ON THE MICROBIAL QUALITY OF MINIMALLY PROCESSED PRODUCTS: A CASE OF A COMMERCIALIZED READY TO EAT SALAD.

Sihem JEBRI

Faten RAHMANI

Widad ZERNADJI

Mariem YAHYA

Fatma HMAIED

National Center of Nuclear Sciences and Technologies
Sidi Thabet/Ariana, Tunisia

Sihem.Jebri@cnstn.rnrt.tn

INTERNATIONAL CONFERENCE ON

ACCELERATORS FOR RESEARCH AND SUSTAINABLE DEVELOPMENT

From good practices towards socioeconomic impact

Laboratory of Biotechnologies and Nuclear Techniques

Ready-to -eat products (vegetables, fruits...)
Sea-food...

Water (irrigation, reclaimed, wastewater...)

Socio-economic Challenges related to commercialized Ready-to-Eat products

Changes in eating habits: High consumption of fresh vegetables and fruits

Shelf-life extension
: Spoilage
microorganisms,
biofilm
formation...

Treatment: safe and sustainable supplies of food

23-27 May 2022

Investing in non-thermal processing

- >pathogens elimination
- → shelf-life extension.

Chlorination Biopreservation Affecting **Pathogens** organoleptic / resistance Acetic acid nutritive properties

Treatment:
 safe and
 sustainable
 food supply

lonizing irradiation

Gamma

E-Beam

23–27 May 2022 IAEA, Vienna, Austria

Objectives

- Evaluate the microbiological quality of ready-to-eat salads before and after packaging process in agri-food industry.
- Evaluate the effect of gamma irradiation on naturally occurring and artificially contaminating selected microorganisms.
- Evaluate the effect of E-Beam irradiation on naturally occurring and artificially contaminating selected microorganisms.

Methodology

- Collected from an agri-food industry.
- Collected end-point commercialized products (supermarkets)
- The shelf life indicated : 4 to 6 days.
- The treatment process (chlorination treatment, peeling process and citric acid treatment).
- Processed within 24h.

- Naturally occurring microorganisms during storage period (at 4°C)
- Artificially contaminated samples (*Staphylococcus aureus*) (10^E6 10^E7) CFU/mL.

Methodology

Ready-to-eat salads

IAEA-CN301-015

25 g in 225ml EPT

Microorganisms	Standardized Method
Total aerobic plate count	ISO 4833-2:2013
Staphylococcus aureus	ISO 6888-1:2004
Spores of Clostridium perfringens	ISO 15213:2003
Yeast and molds	ISO 08-059:2001

Naturally occurring microorganisms

IAEA-CN301-015

				\
Microorganism	Raw product	Washing treatment	Packaged product	End-point product
Total aerobic plate count	7 Log ₁₀ /25g	5 Log ₁₀ /25g	4.8Log ₁₀ /25g	8.4 Log ₁₀ /25g
Staphylococcus spp.	$3.7 \log_{10}/25g$ (ND	2.1Log ₁₀ /25g	2.5 Log ₁₀ /25g
Yeasts	5.6 Log ₁₀ /25g	5.5 Log ₁₀ /25g	7.4Log ₁₀ /25g	7.25Log ₁₀ /25g
Molds	5.5 Log ₁₀ /25g (ND	2Log ₁₀ /25g	6.2Log ₁₀ /25g
Clostridium perfringens	2.5Log ₁₀ /25g	2.5Log ₁₀ /25g	2.5Log ₁₀ /25g	2.6Log ₁₀ /25g

E-Beam irradiation

- CIRCE 3, SGN,France
- Applied doses :
- 2; 3 and 4 kGy
- Artificial contaminated samples with Staph aureus
- Naturally occurring microorganisms

- Co₆₀ source
- Applied doses :0.5; 1 and 2 kGy
- Artificial contaminated samples with Staph aureus
- Naturally occurring microorganisms

IAEA-CN301-015

- Results of gamma irradiation showed that an optimal dose of 2kGy offered a pathogen-free, hygienic product in comparison with controls (regarding Staphylococcus spp).
- Shelf-life extension of commercialized ready to eat salad at refrigeration temperature due to considerable reduction of Total aerobic count and yeasts and molds.
- Maximum dose of 2kGy is not effective against sporulating bacteria (*Clostridium perfringens*)

E-Beam irradiation

IAEA-CN301-015

E-Beam irradiation

4kGy → extension of shelf-life to more than 10 days

Staphylococcus spp.

Initial mean concentration (2,5 Log10cfu/g)					
		Dose (KGy)			
	2	3	4		
EB reduction Log scale	2.50E+00	2.50E+00	2.50E+00		
	·	•			

Total aerobic count

Initial mean concentration 8,43 Log10cfu/g				
Dose KGy				
2	3	4		
2.88E+00	2.85E+00	5.41E+00		
	2	Dose KGy 2 3		

Yeast

Initial mean concentration 7,25 Log10cfu/g					
	Dose KGy				
	2	3	3	4	
EB reduction log scale	С	.6	1.4		3.6

E-Beam irradiation

Molds

Initial mean concentration 6,22 Log10cfu/g				
Dose KGy				
2	3	4		
2.14	3.96	6.22		
	2	Dose KGy 2 3		

Clostridium perfringens

Initial mean concentration 2,6 Log10cfu/g				
	Dose KGy			
2	3	4		
0.84	0.98	1.57		
	2	Dose K0		

IAEA-CN301-015

Artificial contamination by Staphylococcus aureus strain (ATCC 25823).

E-Beam irradiation

IAEA-CN301-015

Artificial contamination by Staphylococcus aureus strain (ATCC 25823).

E-Beam irradiation

Artificial Contamination (10E7 CFU) Dose kGy 2 3 4 EB reduction log scale 1.30E+00 1.50E+00 3.00E+00

Gamma irradiation

Artificial Contamination (10E6 CFU)					
		Dose kGy			
	0.5	1	2		
Gamma reduction log scale	3.50E+00	4.00E+00	6.00E+00		

D₁₀ Staphylococcus aureus E-Beam irradiated > D₁₀ Staphylococcus aureus Gamma irradiated.

Conclusions

IAEA-CN301-015

- E-Beam irradiation is more effective against sporulating bacteria (Clostridium perfringens) at a dose of 4 kGy.
- Spores are more resistant to ionizing irradiation treatment than bacteria and viruses \rightarrow usefulness as indicators of irradiation treatment efficiency for food preservation.
- Log reduction of microbial load using irradiation is dependent on the initial concentration of naturally occurring microorganisms -> steps of an efficient pre-treatment in the agro-food industry are requisite to guarantee safe food for consumers.
- Results corroborate the use of E-Beam irradiation for food preservation after packaging process, as it extends its shelf-life with a reduced processing time comparatively to Gamma irradiation.

Research Article

J Bacteriol Mycol. 2021; 8(2): 1167.

Effect of Gamma Irradiation on Microbial Quality of Minimally Processed Product in Tunisia: A Case of Ready to Eat Salad

Rahmani F^{1,2}, Yahya M¹, Jebri S^{1*}, Amri I¹, Mejri A³, Hamdi M⁴ and Hmaied F¹

¹Tunis El Manar University, National Center of Nuclear Sciences and Technologies (CNSTN), Tunisia

²Tunis El Manar University, Tunisia

³Ionizing Radiation Dosimetry Laboratory, National Center for Nuclear Sciences and Technologies (CNSTN), Tunisia

⁴University of Carthage, National Institute of Applied Sciences of Tunis (INSAT), Tunisia

*Corresponding author: Sihem Jebri Cnstn, Tunis El Manar University, National Center of Nuclear Sciences and Technologies (CNSTN), BP 2020, Sidi

Thank you

Acknowledgements:

-Microbiology Team, LBTN (CNSTN)

-Ionizing Radiation Dosimetry Laboratory Team

(CNSTN)

13 L.MT 17 POPERSES CONTROL OF THE POPERSES CONTROL OF

23-27 May 2022

IAEA Headquarters, Vienna, Austria