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Abstract 
 
The Applied Nuclear Physics Group at Lund University has constructed a CANS (Compact Accelerator-driven 

Neutron Source). The CANS is based around a 3 MV, single-ended, Pelletron accelerator, which is used to impinge a 2.8 MeV 
deuterium beam into a beryllium target. The anticipated neutron production will be on the order of 1010 n/s in 4π sr, with future 
upgrades expected to increase neutron production to 1011 n/s. Neutron energy will be up to 9 MeV with peak emission at ~5 
MeV. Shielding and moderation will be provided by a large water tank surrounding the target, with exit ports to allow 
moderated neutrons to be directed to experiments. The thermal-neutron flux at the exit of the extraction ports is anticipated to 
be up to 106 n/cm2/s. The CANS will be used to forward the activities of the group in the area of neutron-activation analysis, 
in addition to a broader range of neutron related applications. 

1. INTRODUCTION 

Since 2014, the Applied Nuclear Physics Group at Lund University has provided access to neutrons [1], 
with a well-established and user-focused infrastructure, emphasising expertise in nuclear physics and neutron-
detection techniques. The use of these neutron has contributed to materials research [2] and detector development 
[3] related to the European Spallation Source [4]. The Applied Nuclear Physics group also has a long history of 
accelerator-based research; from the development of PIXE [5] in the 1970’s to advanced modern detector systems 
[6–8] more recently. In 2017, it was decided to combine these areas of expertise and construct a dedicated 
beamline for neutron production [9]. The new CANS (Compact Accelerator-driven Neutron Source) offers a 
significant increase in flux over the neutron sources currently used at the laboratory, with an initial neutron-
production rate anticipated to be on the order of 1010 n/s in 4pi sr and a further increase to 1011 n/s in 4pi sr 
predicted. The CANS is now entering the commissioning phase and, once fully realised, will be comparable to 
the Kyoto University Accelerator-driven Neutron Source [10]. A schematic overview of how the CANS fits into 
the pre-existing laboratory environment is presented in Fig. 1. The CANS will use a 3 MV, single-ended Pelletron 
accelerator to impinge a 2.8 MeV deuterium beam, with currents from 10 to 100 A, into a beryllium target. 
Resulting neutron energies will be up to 9 MeV with peak emission at ∼5 MeV. Pulsing of the neutron source 
will be made possible by periodic deflection of the beam into a tantalum beam-dump. Shielding and moderation 
is provided by a large water tank surrounding the target. 

2. INRASTRUCTURE AT THE NUCLEAR APPLICATIONS LABORATORY 

The primary workhorse of the laboratory over the past 30 years, has been a single-ended NEC-3UH 
Pelletron accelerator, commission in 1990 [11]. This machine has been used primarily for ion-bean analysis, with 
the application of PIXE, RBS, STIM, NRA, ERCS to a wide variety of fields. Examples of the work conducted 
are:  geology [12–15], medicine [16, 17], biology and ecology [18–21], meteorology [22], detector development 
[7, 23, 24], characterisation of nano-structures [25] and astro-geological materials [26, 27]. It is this Pelletron that 
has been re-purposed as the CANS system. 

As well as a comprehensive inventory of alpha-particle, beta-particle and gamma-ray sources, the 
laboratory also possesses a number of radioactive neutron sources: 252Cf, AmBe, PuBe: with a neutron-production 
rates on the order of 106 n/s in 4pi sr. A dedicated irradiation area, incorporating 2.75 m3 water filled shielding-
tank, is installed to utilise these sources. The shielding tank, or "aquarium", has four ports to allow fast neutrons 
to escape. This set-up has been used extensively in work on -ray and neutron tagging [28–30], and neutron detector 
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development [31, 32]. In 2019, a GENI-16 neutron generator from SODERN [33] was installed to provide access 
to fast neutrons with a significant increase in neutron flux. The GENI-16, owned by SKB (Swedish Nuclear Fuel 
and Waste Management Company), has a neutron production rate of 108 n/s in 4pi sr. It has been used in work 
related to nuclear safeguards [34], and also in the prototyping of a cyclic-NAA (Neutron-Activation Analysis) 
system [35] which will ultimately be moved to the CANS. 

The laboratory has and a triple -ray Ir spectrometer, which has been used in astro-geological research [36], 
[37], and can measure concentration of iridium in sample down to parts-per-trillion. In addition to the detector 
systems associated with the various experimental set-ups, a wide variety of infrastructure is available. This 
includes a range of scintillation materials and photomultipliers, HPGe detectors, 3He tubes, a number of multi-
channel full digitisers and a 200 channel VME data-acquisition system. 

 
FIG. 1. Floor plan for the Nuclear Applications Laboratory, Lund University, with key features of the layout, and 
major infrastructure components, labelled. The new CANS, which must compete for space in already busy 
laboratory environment, is place between the pre-existing IBA beamlines. 

2. MOTIVATIONS FOR A CANS 

Broadly, the motivation for the development of a CANS at Lund University is to expand the existing efforts 
in neutron related research, but the immediate application will be in the field of NAA. The Nuclear Applications 
Laboratory has a history in NAA, that has previously relied on reactor-based irradiation of samples but a new, in-
lab, cyclic-NAA system is now being developed. A prototype of the new NAA system is currently in operation 
[38], with the Genie-16 neutron generator used in place of the CANS which will drive the final configuration. 
High resolution gamma-ray spectroscopy and gamma-ray coincidence spectroscopy will be performed by an array 
of high-purity Ge detectors, positioned adjacent to the accelerator control room. Sample loading and unloading 
will be performed at the location of the measurement station to remove the necessity of having to enter the 
accelerator hall. The cyclic-NAA system will be used to monitor for the presence of specific radionuclides in 
environmental samples, taken from around the European Spallation Source [39, 40]. 

In addition to NAA, the CANS is intended to be used: in the develop novel state-of-the-art instruments and 
methods for the characterisation of spent nuclear fuel, with the purposes of nuclear safeguards; to test and 
categorise detectors for neutron scattering instrumentation; for work on thermal-neutron tagging; and as an 
educational platform. Further to these specific motivations, the commissioning of this CANS is part of a larger 
move towards a CANS network for Europe. At present, several CANS are either being designed or constructed 
with Europe, including HBS Jülich [41], ESS-Bilbao [42] and SONART [43]. For comparison, Japan boasts a 
wide a highly integrated network of neutron sources, with large spallation sources such as the Japan Spallation 
Neutron Source [44], reactor-based sources such as JRR-3 [45] and a backbone of CANS [46]. The move towards 
this network of CANS in Europe is becoming increasingly desirable as the available beam-time at conventional 
reactor facilities declines [47]. 

3. COMPACT ACCELERATOR DRIVEN NEUTRON SOURCE DEVELOPMENT 
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The CANS will generate neutrons by the Be(d,n) reaction [48], using a 3 MV, single-ended Pelletron 
accelerator to impinge a deuterium beam into a thick beryllium target. Deuteron-beam energy will be up to 2.8 
MeV with a current of 10 micro-A, although and upgrade to the ion source of the accelerator is planned which is 
anticipated to raise the current to 100 micro-A. At the presently available beam current, the anticipated neutron 
production will be on the order of 1010 n/s in 4pi sr with peak neutron emission at an energy of ∼5 MeV. The 
experimental hall in which the Pelletron accelerator is stationed, was formerly used for an electron synchrotron 
accelerator. The control room for the experimental hall is therefore already well shielded, with a 2 m thick wall. 
Due to the existing neutron related research activities that take place in the experimental hall, the majority of the 
other licensing requirement with regards to radiation protection are already fulfilled. 

The 9 m long, high-vacuum line that will carry the deuteron beam to the target position is constructed at 0 
degrees to the exit of the accelerator. A total of five dipole magnets, four inside the accelerator pressure vessel 
and one at 2 m from the accelerator exit are used to position the beam. A pair of quadrupole magnets are positioned 
at 5 m from the accelerator exit and are used to focus the beam to a diameter of 1 cm on the target. Following the 
quadrupole magnets, a fast electrostatic deflector is positioned to allow the beam to be periodically deflected into 
a Tantalum beam dump. In this way the neutron source can be run in pulse mode with an adjustable duty cycle, 
and pulse widths down to 25 ns. A number of viewing ports with optical cameras are positioned along the 
beamline, each with an electrically isolated florescent screen that can be moved into the path of the beam to 
measure its current and view its profile. A movable Faraday cup is also positioned at 1.5 m from the target. The 
target itself is a 2 mm thick piece of beryllium, mounted to an electrically isolated flange, externally cooled with 
deionised water. Current measurement is also made from the target flange. 

 
FIG. 2. Concept for the primary-shielding and moderator construction, based on a 3000 l tank of de-ionised 
water. The internal structure supports the ports for beamline insertion and neutron extraction, as well as 
providing a fixing point for sample irradiation for NAA 

 
Shielding and moderation will be provided by a 3000 l water tank surrounding the target, with additional 

shielding provided by layer of layer of MirroborTM [49] and high-density polyethylene. Illustrations of this 
construction can be seen in Fig. 2, the design being developed in collaboration with Cipax AB [50]. A total of 
four ports penetrate the tank, one to facilitate the insertion of the beamline and three for the extraction of neutrons. 
The three neutron-extraction ports are presently planned to be aligned at 0 degrees 30 degrees and 150 degrees to 
the incoming deuteron beam. The lower angel ports will extract a higher proportion of fast neutrons, while the 
higher angel ports will extract a greater proportion of thermal neutrons. Fig. 3 shows simulation results, generated 
in PHITS [51–53], which illustrate the higher neutron flux and neutron energy produced from the target in the 
forward direction. Neutron flux at the NAA irradiation position is expected to on the order of 10^8 n/cm^2/s, this 
rising to 10^9 n/cm^2/s with the planned upgrade. 

4. SUMMARY AND OUTLOOK 

The Nuclear Applications Laboratory at Lund University already boasts a well-developed infrastructure, 
incorporating a variety of sources of ionising radiation, with a long history of applied nuclear physics research. A 
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CANS is soon to be added to the existing infrastructure, based on a deuterium beam and a beryllium target. The 
CANS is predicted to produce thermal neutron fluxes of around 104 n/cm^2/s, and fast neutron fluxes of around 
106 n/cm^2/s, at the exit ports to the shielding assembly. The initial use of the CANS will be the implementation 
of a cyclic-NAA system, for which samples to be measured are expected to be irradiated with fluxes of around 
108 n/cm^2/s. A future upgrade of the accelerators ion source is anticipated to increase all neutron fluxes by an 
order of magnitude over the aforementioned values. The new CANS is aimed at providing proof of principle for 
a dedicated CANS within Scandinavia, adding to the planned network of CANS for Europe. 

 

 

FIG. 3. Neutron energy spectra from the source without shielding and moderation in place, for a 2.8 MeV 
deuterium beam. The influence of the forward momentum of the beam can clearly be seen in the increased neutron 
flux and neutron energy in the forward direction. 
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