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Decay-heat validation of simulations 
with fusion neutrons
(+ nuclear heating importance)
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• Why decay heat predictions are important for fusion engineering
• FNS Decay heat benchmark to test codes and libraries
• Nuclear heating evaluations; contribution of photons
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• Fusion is moving towards engineering 
delivery of prototype and near-commercial 
reactors 

• Cooling requirements, both during and after 
operation, are critical engineering parameters

• Large uncertainty is not acceptable when 
designing cooling plants and will jeopardize 
net energy gain

• A single divertor cassette on DEMO may 
have cooling requirements of 10s of kW at 
shutdown
• One of 54 in this design
• Mixture of steels, W, copper-alloys

Motivation for high accuracy in decay 
heat predictions
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Fig. 1. (a) CAD model of the DEMO divertor cassette and (b) a target PFC mock-up with a schematic of the cross section [1].

this paper, recent results from the WPDIV activities are presented
focusing on the subproject ‘Cassette’ (Fig. 1 [1] ).

2. General technical information

In the European DEMO plant design, the divertor consists of 54
separable cassettes. For each set of three cassettes, a lower port
is assigned for remote maintenance operation. The DEMO divertor
has a reduced size compared to the ITER divertor [4].

In Fig. 2 the sectional geometry of the current cassette model
(revised in 2016) is illustrated together with the dimensions. The
cassette body has a poloidal extension of 3.02 m,  height of 1.97 m
and toroidal outer width of 1.04 m.  The nominal gap size between
two adjacent cassettes will be between 20 and 30 mm.  The main
body of cassette is made of Eurofer97, reduced activation ferritic
martensitic steel. It is divided into chambers separated by stiffening
ribs.

The in- and outboard vertical targets are protected by actively
cooled PFCs covering the surface. The PFCs and main cassette body
are cooled by separate cooling circuits to hold different coolant
temperature for each. The primary option for coolant is water for
the whole divertor whereas the feasibility of helium cooling is also
explored as a low-priority option. The baseline design option for
water-cooled PFCs is the ITER-type tungsten monoblock (with a
reduced size) with CuCrZr cooling tube [4,5]. In addition, novel PFC
design concepts are developed [2].

It is noted that the dome is still regarded as optional and its
necessity is currently under extensive assessment.

3. Neutronic analysis

Based on the DEMO plant CAD model of 2015 (with helium-
cooled pebble bed blanket), 3D neutronics analysis was carried out
using the MCNP5 code and JEFF 3.2 nuclear data [6]. The calcula-
tions were normalized to the gross fusion power of 2037 MW which
would correspond to a neutron production rate of 7.232 × 1020 n/s.

As the final decision is still open as to whether the dome shall be
deployed or not, it was assumed that the entire surface of the cas-
sette body to the plasma was covered with PFCs of the same kind
to shield the whole cassette from particles and radiation. It is noted
that this is a temporary option to avoid any unrealistic neutronic

assessment in the absence of a dome. A consolidated shielding con-
cept is currently devised which shall be employed in case dome is
not adopted.

For the neutronics modelling of PFCs, it was assumed that the
section of the PFC consisted of 3 homogenized layers where the
outermost layers were tungsten and the middle layer was  a mixture
of tungsten (W:  34 vol.%), water (33 vol.%), CuCrZr (18 vol.%) and
copper (Cu: 15 vol.%) representing the actual volume fraction of
constituent materials in the PFC.

For the cassette body, water as well as helium was  assumed
as coolant, for which 3 different cases of materials mixture were
considered as follows (volume percent):

1) H2O-cooled: Eurofer (54%), H2O (46%)
2) He-cooled: Eurofer (50%), He (50%)
3) He-cooled: Eurofer (30%), He (50%), B4C (20%)

In the case 3, B4C cladding was assumed for neutron shielding.
The chemical composition of Eurofer97 steel is given in Table 1.

Only the major alloying elements and the impurities of high radio-
logical impact are listed [7].

3.1. Neutron wall loading

The neutron wall load in the divertor exhibits high spatial vari-
ability due to the complex geometry. The maximum value amounts
to 0.53 MW/m2 at the upper surface of the cassette which is roughly
one half of the maximum neutron wall load at the outboard equa-
torial first wall (1.33 MW/m2).

3.2. Nuclear heating

Fig. 3 shows the spatial distributions of nuclear heating power
density in Eurofer for the water-cooled (left) and the helium-cooled
(right) cases, respectively. It shows that nuclear heating in Eurofer
was concentrated near the surface of the cassette and decreased
rapidly in the outward radial direction (nota bene: the color code
scale is logarithmic). The volumetric heating power density ranged
between 0.1 and 6 MW/m3 for the water-cooled cassette body
whereas it varied from 0.2 to 4 MW/m3 for the helium-cooled case
(0.1-3.5 MW/m3 with B4C shield).

Table 1
Chemical composition of Eurofer97 steel (wt.%) [7].

Fe Cr W Mn  V Ta C Ni Mo Ti Nb Al B Co

base 9 1.1 0.4 0.2 0.12 0.11 0.01 0.005 0.02 0.005 0.01 0.002 0.01
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• JAEA experiments in 1996-2000 aimed at 
providing fusion-relevant decay-power data 
for important materials

• 2 mA deuteron beam onto a tritium target 
producing 14 MeV-peaked neutron fluxes of 
~1010 n/cm2/s

• Decay heat measured 
after 5-minute or 7-hour 
irradiations using 
Whole Energy 
Absorption Spectrometer
(WEAS)

FNS decay-heat experiments
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• Measurements for 73 different
materials

• Crafted into a simulation benchmark
to test decay-heat predictions with 
inventory codes (FISPACT-II) and 
different nuclear 
data libraries

• Latest version:
• Mostly tests

cross sections
(not decay data)

• Data and benchmark guidance available 
on CoNDERC website
https://nds.iaea.org/conderc/ 
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Typical benchmark output: W
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• Simulations 
overpredict 
relative to 
experiments after 
both 5-min and 7-
hour irradiation

• Potential 
unresolved issue 
with 186W(n,2n)
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Good performance: SS304
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• Benchmark provides excellent validation of decay heat 
predictions for many materials, even complex alloys

• Sometimes requiring close match of several reaction 
channels over several orders of decay times
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Metastable importance: tin
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Measurements were taken 
soon after exposure, allowing 
validation of the production of 
short-lived metastables in 
some materials,
and even 16N (T1/2=7s)
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Overall performance of libraries
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• Deviations from experiment 
increase with Z

• c2 values are reasonably 
consistent across the materials 
(high Z materials typically had 
larger errors in the experiments)
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Library comparison
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• Measuring performance 
based on c2 shows 
TENDL libraries do about 
as well as fusion-tailored 
EAF2010

• No improvements 
recently; is this the limit of 
agreement for this 
benchmark?....
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Still room for improvement?
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• Fundamental 
disagreement in decay 
profiles still exist for 
these two materials 
with all libraries
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• Too much 115In(n,g)116mIn?
• Experimental limitation

(improperly characterized thermal fluxes)?

• Too much 190Os(n,n´)190mOs?
• Incorrect production pathway?
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Nuclear heating
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• Qualifying performance of materials being considered for future fusion reactors 
relies on a combination of ion irradiation and campaigns in fission test reactors

• It is important to understand the damage evolution and the origin of that damage
• Comparison between techniques and relevance of fission experiments for fusion 

needs accurate prediction of nuclear damage dose
• E.g., dpa in W
• Damage created by (n,2n)

reactions predicted to 
be important in fusion,
but almost absent in fission

Importance of nuclear heating 
predictions for fusion material testing
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W/g
DEMO

Fusion total 
(mt 301)

Fusion photon 
(442)

Fusion nonelastic 
(303)

Fusion Elastic
(302)

W 2.731 2.650 (97%) 2.727 4.279e-3
Fe 1.683 1.191 (71%) 1.646 3.666e-2
Be 3.645 2.885e-3 (0%) 2.078 1.567

Nuclear heating fusion vs fission
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W/g
HFR

Fission total Fission photon Fission nonelastic Fission Elastic

W 10.479 10.358 (99%) 10.476 3.794e-3
Fe 1.997 1.626 (81%) 1.954 4.277e-2
Be 2.146 8.369e-7 (0%) 4.451e-1 1.701
• Damage-dose prediction based on dpa does not (?) include energy from photons, which in materials like W 

is most of the energy deposited in materials (local deposition assumption in NJOY-HEATR) 
• Could explain anecdotal evidence of self-annealed materials under neutron exposure (compared to ion 

irradiation) – photons may provide enough energy to anneal damage – ongoing work
• Accurate nuclear heating predictions would then become critical for predicting material performance

M. Gilbert | fusion decay heat | 22/4/22



|

• Decay heat predictions are important for design engineering of fusion power 
plants (~ few 100s of W cooling required per kW of decay heat)

• Benchmarking of decay heat predictions against experiments under fusion 
conditions demonstrate good performance across a range of materials 
• Improvements have slowed recently – possible limit of benchmark, but some 

materials still show clear discrepancies
• Further experiments, particularly on primary fusion materials, including new 

alloys (steels), are needed
• Nuclear heating calculations could be critical to understand the observed 

damage in neutron-irradiated materials and thus to predict performance evolution

Summary
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