

D. P. Griesheimer¹, S.C. Marin¹, P.K. Romano^{2*}, M.H. Stedry²

Bechtel Marine Propulsion Corporation ¹Bettis Atomic Power Laboratory ²Knolls Atomic Power Laboratory *Current affiliation: Argonne National Laboratory PHYSOR 2016 – Unifying Theory and Experiments in the 21st Century Sun Valley Resort, Sun Valley, Idaho May 1-5, 2016 (CD-ROM)

Motivation

- Many types of transport analyses used a source-term based on the decay of radionuclides
 - Shutdown reactor shielding, detector response, and decay heat
- Transport solvers must model spatial and energy distribution of decay source
 - Many MC codes require user-defined decay source definitions.
 - Even with scripts, defining sources can be tedious
 - Other MC codes include built-in decay energy spectra but are targeted towards localized activation calculations
 - Not well suited for large-scale reactor calculations

Overview

- Describe a new method for sampling decay radiation in continuous-energy MC calculations.
 - New method accounts for the spatial and energy distribution of decay radiation
 - uses composition information from the MC model, along with ENDF-format decay data
 - Able to handle models with many radioactive nuclides distributed among large numbers of compositions.
 - Such as depleting 3-D models of nuclear reactors
 - This talk will describe the data processing and sampling algorithms and provide numerical results.

Decay Data

- ENDF-Format Decay Data
 - Sub-library 4, File 8, MT=457
 - Includes decay constant, branching fractions, radiation yield(s), and energy spectra for decay radiation.
 - ENDF/B-VII.1 data for 3817 nuclides (1988 with spectra)
 - JEFF-3.1.1 data for 3852 nuclides (1521 with spectra)
 - Secondary spectra may be discrete or continuous.
 - Data available for multiple secondary radiations
 - Gamma rays, x-rays, neutrons, alpha, etc.
 - Data available for a variety of decay modes
 - β^{-} , EC/ β^{+} , internal transition, spontaneous fission

Decay Data Processing

- Reorganize data to facilitate decay source sampling
 - Secondary distributions converted to ACE law 4 format.
 - Yield and energy release separated into 3 categories
 - Neutron, photon, charged particle (local energy deposition)
- Complications arise when processing data
 - Accounting for compound decay modes (e.g., $(\beta$ -,n))
 - Single emission spectrum does not distinguish between multiple decay sequences for a single decay mode.
 - Ensuring conservation of energy
 - Overall energy release values for some decay modes do not agree with averages computed from the secondary energy spectra.

Decay Data Processing (II)

- Complications arise when processing data (continued)
 - Quality of the decay data
 - Some data set are incomplete or inconsistent with other references
 - ENDF/B-VII.1 uses continuous spectrum representation for ~30 nuclides (e.g., ⁸⁷Br) when discrete data is given by other references such as ENSDF and the Table of Isotopes.
 - ENDF/B-VII.1 only includes spontaneous fission spectra for ²⁵²Cf. JEFF-3.1.1 provided spontaneous fission neutron and photon spectrum for most transuranics.
- Additional details and observations in full paper

Sampling Algorithm

- During MC simulation, initial position, energy, and direction of decay radiation is sampled
 - Based on relative concentration of radionuclides by composition and decay properties of the radionuclides
 - Decay source algorithm uses sequential approach for sampling decay-radiation state using conditional probabilities
 - Sample radiation type based on total activity by type.
 - Sample position based on composition activity for rad. Type.
 - Sample decay nuclide based on selected composition
 - Sample decay mode based on selected decay nuclide
 - Sample energy and direction based on selected decay mode

Radiation Type Sampling

• For radiation type *t*, the decay emission rate in each composition *c* is

$$A_{t,c} = V_c \cdot \sum_{i=1}^{M_c} N_{c,i} \lambda_i y_{t,i},$$

A = Activity (particles/sec) V = Volume N = Number density

- M =Num. Radionuclides
- λ = Decay constant
- y = Decay yield
- Relative probability that a decay source particle will be emitted with type t

$$p_{t} = \frac{A_{t}}{A_{\text{total}}} = \frac{\sum_{c'=1}^{C} A_{t,c'}}{\sum_{t} \sum_{c'=1}^{C} A_{t,c'}}.$$

- Sample *t* based on p_t
 - If decay source is combined with other (fixed) sources, an additional sampling step is required to determine the source type

Composition Sampling

- Birth location (and composition) is determined using rejection sampling.
 - Candidate birth positions are sampled uniformly over the volume containing all decay sources
 - The composition number, c, is determined for the candidate position and used to determine the composition activity $A_{t,c}$
 - Candidate position is randomly accepted with probability equal to the relative activity for the composition.

$$p_{t,c}^{\text{reject}} = 1 - \frac{A_{t,c}/V_c}{\max_{c'} (A_{t,c'}/V_{c'})},$$

 $\max_{c'} \left(A_{t,c'} \big/ V_{c'} \right)$

is the maximum decay emission rate density over all compositions

Rejected birth positions are resampled from the uniform volumetric distribution.

Nuclide/Decay Mode Sampling

 Once a birth location has been sampled, the parent nuclide is sampled in proportion to the relative emission rate for all nuclides in the sampled composition

$$p_{t,i} = \frac{N_{c,i} \,\lambda_i \,y_{t,i}}{\sum_{i'=1}^{M_c} N_{c,i'} \,\lambda_{i'} \,y_{t,i'}}$$

 Similarly, decay mode is sampled in proportion to the relative emission rate for each mode that emits the given radiation type

$$p_{t,m} = \frac{\mathcal{Y}_{t,i,m}}{\sum_{m'=1}^{M_i} \mathcal{Y}_{t,i,m'}}$$

Note that the radiation yield value, y, includes the mode branching fraction

Energy/Direction Sampling

- Once location, nuclide, and decay mode have been determined, the energy and direction of the source particle are set.
 - Birth energy is sampled from the LAW 4 secondary energy distribution.
 - Uses existing sampling routines for MC code
 - Source direction is sampled isotropically

Implementation and Testing

- Integrated decay source capability was implemented in MC21
 - Continuous-energy MC radiation transport code
 - Processing of raw ENDF-format decay data performed by NDEX, an in-house data processing code
- Method was tested on two types of realistic calculations involving decay sources
 - Activated coolant pipe shielding example
 - PWR decay heating example

MC21

Activated Coolant in Pipe

- Helical 4 cm diameter steel pipe filled with water, with
 - ¹⁶N: 3.5×10⁶ Bq/cm³
 - ¹⁷N: 150 Bq/cm³
 - Similar to levels seen in commercial LWRs
- Tedious to manually define source distribution
- With new decay source, simply add ¹⁶N and ¹⁷N to the water compositions
 - No additional input required

Activated Coolant Photon Flux

Photon flux from ¹⁶N decay using 1×10⁸ source histories

Photon Flux X-Z Plane (Y = 0.0 cm)

Photon Flux X-Y Plane (Z = 6.5 cm)

• Material attenuation through pipe wall and geometric attenuation in air.

Activated Coolant Decay Spectrum

Decay Source Spectrum 30cm from Center of the Pipe

Photon Flux Spectrum at 30 cm Neutron Flux Spectrum at 30 cm 382 1170 6128 (^{17}N) 511 7115 (^{17}N) 1700 10⁻⁴ 10⁻⁴ (^{16}N) (^{16}N) (^{17}N) 2742 (^{16}N) 1754 8896 **Relative Intensity** Relative Intensity 10⁻⁵ 884 (^{16}N) 2822 6915 (^{16}N) 1954 10⁻⁶ (^{17}N) (^{16}N) (¹⁶N) $^{16}N)$ 10⁻⁶ 10⁻⁸ [10-7 10⁻¹⁰ 10⁻⁸ 2000 4000 6000 8000 1000 0 0 500 1500 Photon Energy (keV) Neutron Energy (keV)

• Emission lines correspond to ¹⁶N and ¹⁷N.

Photon

Neutron

Decay Heat – Pin Cell

- MC21 was used to test the decay power of a PWR unit-cell as a function of irradiation time and shutdown time.
- Unit-cell is based on H.B. Robinson fuel element spec.
 - Reflecting boundary conditions used to create an infinite lattice.
 - 1351 depletable nuclides in fuel (1169 with xs or decay data)
- Cell was depleted at power density of 30 MW/MTU
 - For periods of 1 second to 10,000 hours (1.14 years)
 - MC transport: 120 batches (20 discard) of 15,000 histories
- Shutdown depletion calculations following at-power calc.
 - 9 zero power depletions, from 0.1 seconds to 3.17 years shutdown
 - All calculations used built-in MC21 (BDF) depletion solver

Decay Heat – Pin Cell (Results)

1 sec 1 hour 1 dav 1 week 1 month 1 min 1 year 1.E-01 Decay Power to Reactor Power Ratio (P/P₀) 1.E-02 1.E-03 1E4 hr Time at power: 10 1 m 10 m 1 h1.E-04 1.E+00 1.E-01 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Time After Shutdown [seconds]

MC21 Calculated Decay Heat Rate

- Average run time on 224 processors:
 - 1.25 minutes for MC radiation transport
 - 0.1 0.2 seconds per depletion calculation

- Decay heating results are compared with an empirical correlation from Todreas and Kazimi
 - Including both fission product and activation products
- MC21 results agree
 well for shutdown
 times > 10 seconds
 - MC21 overpredicts decay heat for atpower times less than 1 minute

Decay Heat – 1/8 Core

- 3D H.B. Robinson PWR Model
 - ¼ core radial
 - ½ core axial
 - 192,888 unique depletable comps.
 - 1,169 nuclides in each composition.
 - 11.32 GB/node
 - Running Strategy
 - 328 MW power
 - 3 operating cycles
 - 22 depletion steps
 - 16 at power
 - 6 shutdown

- 600 batches (100 discard) of 100,000 neutrons each.
- ~1 hour per at-power timestep on 384 processors.

Decay Heat – 1/8 Core (II)

- Cycle 1
 - Decay heat is highly peaked in the center of the core
- Cycles 2-3
 - Decay heat moves upward and outward in core.
 - Peak local heating density decreases through life.
- Total decay heat remains constant over all cycles – 4.23±0.27 MW
- Decay heat density at radial (z = 0) and axial (y = 0) core mid-plane 1 hour after shutdown for each cycle.

Conclusions

- An integrated decay source capability for continuousenergy MC has been developed and tested on several realistic models.
- Decay source method uses:
 - Rejection sampling based on nuclide inventories to generate decay emission sites.
 - Radiation energies sampled from nuclide and decay-mode specific distributions in the ENDF decay sub-libraries.
- Method produces decay source as accurate as the underlying nuclide inventories and decay data.
 - Eliminates the need to generate decay sources by hand or with an external script, simplifying shielding, spectroscopy, and shutdown source calculations.

QUESTIONS?

