

A Generalized Framework for In-Line Energy Deposition during Steady-State Monte Carlo Radiation Transport

May 7, 2013

D. P. Griesheimer¹, M.H. Stedry²

Bechtel Marine Propulsion Corporation ¹Bettis Atomic Power Laboratory ²Knolls Atomic Power Laboratory

Framework Overview

- Energy deposition calculations by explicit neutron/photon transport is expensive for large models (e.g., 3D reactor core model)
- Generalized energy deposition modeling framework allows control over the accuracy, and expense, of calculations at run time
 - Framework supports coupled transport along with three approximate energy deposition treatments
 - Approximate treatments neglect transport of secondary radiation(s) while still preserving energy
 - All treatments can easily be implemented in a single code, giving users the flexibility to select a treatment based on need and resource availability.

Framework Overview

- Framework separates energy deposition into three basic categories.
 - Common mathematical framework, but each energy deposition treatment uses different models for calculating deposition in each category.
 - Energy deposition for each category is based on standard nuclear data such as: reaction Q-value, KERMA (h), photon yield (γ), and energy release per fission (ENDF MT 458) data (f)

Framework Overview

Neutron Transport

$$\int_{4\pi} \widehat{\Omega} \cdot \nabla \psi_{n}(E, \widehat{\Omega}) d\widehat{\Omega} + \Sigma_{a} \phi_{n}(E) = \int_{0}^{\infty} \Sigma_{s, E' \to E} \phi_{n}(E') dE' + S_{n}(E)$$
$$S_{n}(E) = \frac{1}{k_{\text{eff}}} \chi_{n, f}(E) \int_{0}^{\infty} \overline{\nu} \Sigma_{f} \phi_{n}(E') dE'$$

Photon Transport

$$\int_{4\pi} \widehat{\Omega} \cdot \nabla \psi_{\gamma} (E, \widehat{\Omega}) d\widehat{\Omega} + \mu_{t} \phi_{\gamma}(E) = \int_{0}^{\infty} \mu_{s, E' \to E} \phi_{\gamma}(E') dE' + S_{\gamma}(E)$$
$$S_{n}(E) = \frac{1}{k_{\text{eff}}} \chi_{\gamma, f}(E) \int_{0}^{\infty} \overline{y}_{\gamma, f} \Sigma_{f} \phi_{n}(E') dE' + \chi_{\gamma, nf}(E) \int_{0}^{\infty} \overline{y}_{\gamma, nf} (\Sigma_{t} - \Sigma_{f}) \phi_{n}(E') dE'$$

Energy Deposition

Terms give energy deposition due to:

 $H = H_{\rm f} + H_{\rm nf} + H_{\gamma}$ $H_{\rm f}$ – Direct fission heating $H_{\rm nf}$ – Neutron slowing-down heating H_{γ} – Photon heating

- #1: Constant Energy Per Fission
 - Constant (user-defined) energy release per fission (C₁)
 - All energy deposited at fission site

$$H_{\rm f} = \int_0^\infty C_1 \,\Sigma_{\rm f} \,\phi_{\rm n}(E') \,dE'$$

$$H_{\rm nf} = 0$$

 $H_{\gamma} = 0$

- #2: Constant Indirect Energy Per Fission
 - Energy and nuclide-dependent energy release per fission (ENDF MT 458 data)
 - Constant (user-defined) indirect energy release per fission (C₂) to account for exothermic reactions during neutron slowing down.
 - All energy deposited at fission site

$$H_{\rm f} = \int_0^\infty \left[\sum_i (f_{\rm fpke,i} + f_{\rm beta,i}) \bar{Q}_{\rm f,i}(E) \Sigma_{\rm f,i} \right] \phi_{\rm n}(E) \, dE = \int_0^\infty \bar{h}_{\rm f} \, \phi_{\rm n}(E) \, dE$$
$$H_{\rm nf} = \int_0^\infty \left[\sum_i \left((f_{\rm prompt \, n,i} + f_{\rm delayed \, n,i}) \bar{Q}_{\rm f,i}(E) + C_2 \right) \Sigma_{\rm f,i} \right] \phi_{\rm n}(E) \, dE$$
$$H_{\gamma} = \int_0^\infty \left[\sum_i (f_{\rm prompt \, \gamma,i} + f_{\rm delayed \, \gamma,i}) \bar{Q}_{\rm f,i}(E) + C_2 \Sigma_{\rm f,i} \right] \phi_{\rm n}(E) \, dE$$

- #3: Local Photon Energy Deposition
 - Energy and nuclide-dependent energy release per fission (ENDF MT458 data)
 - Fission fragment and beta particle energy is deposited at fission site (direct fission heating)
 - Neutrons carry energy during transport and deposit energy at each collision
 - Energy and nuclide specific KERMA data for energy release in all non-fission neutron/nucleus interactions
 - Must normalize by $k_{\rm eff}$ to preserve total energy of neutron population between batches in eigenvalue calculations
 - Photon energy is deposited where created (fission or collision site)

$$H_{\rm f} = \int_0^\infty \bar{h}_{\rm f} \,\phi_{\rm n}(E) \,dE \qquad \qquad H_{\rm nf} = \int_0^\infty \bar{h}_{\rm nf} \,\phi_{\rm n}(E) \,dE$$
$$H_{\gamma} = \int_0^\infty C_3 \left[\sum_i (f_{\rm prompt\,\gamma,i} + f_{\rm delayed\,\gamma,i}) \bar{Q}_{\rm f,i}(E) \Sigma_{\rm f,i} + E \chi_{\gamma,{\rm nf},i}(E) \bar{y}_{\gamma,{\rm nf}}(E) \left(\Sigma_{\rm t} - \Sigma_{\rm f}\right) \right] \phi_{\rm n}(E) \,dE$$

- #4: Coupled Neutron/Photon Transport
 - Energy release the same as treatment #3
 - Photons are samples at neutron collision and fission events and banked for transport in separate simulation

$$H_{\rm f} = \int_0^\infty \bar{h}_{\rm f} \,\phi_{\rm n}(E) \,dE$$
$$H_{\rm nf} = \int_0^\infty \bar{h}_{\rm nf} \,\phi_{\rm n}(E) \,dE$$
$$H_{\rm v} = \int_0^\infty \bar{h}_{\rm v} \,\phi_{\rm v}(E) \,dE$$

- #4: Coupled Neutron/Photon Transport
 - Photon energy deposition throughout problem is normalized by total energy of source photons emitted, creating a photon redistribution function (PRF)

$$\omega = \frac{\int_0^\infty \bar{h}_\gamma \, \phi_\gamma(E) \, dE}{\int_V \, \int_0^\infty E \, S_\gamma(E) \, dE \, d\vec{r}}$$

- PRF can be used to estimate photon energy distribution for subsequent neutron calculations without additional photon transport simulations
 - PRF only needs to be recalculated when the shape and/or spectrum of the photon distribution has changed significantly.

$$H_{\gamma} = \omega \int_{V} \int_{0}^{\infty} \left[\sum_{i} (f_{\text{prompt } \gamma, i} + f_{\text{delayed } \gamma, i}) \bar{Q}_{f,i}(E) \Sigma_{f,i} + E \chi_{\gamma, \text{nf}, i}(E) \bar{y}_{\gamma, \text{nf}}(E) \left(\Sigma_{t,i} - \Sigma_{f,i} \right) \right] \phi_{\text{n}}(E) \, dE \, d\vec{r}$$

			Constant Energy Release per Fission	Constant Indirect Energy Release per Fission	Local Photon Energy Deposition	Fully Coupled Neutron- Photon Transport
Energy Release Interactions	fission	User input constant energy per fission	at fission site	-	-	-
		Kinetic energy of fission fragments	-	_ at fission site _	at fission site	at fission site
		Delayed β^{-} emission from fission product decay	-	at fission site	at fission site	at fission site
		Prompt and delayed neutron emission	-	at fission site	detailed neutron transport	detailed neutron transport
		Prompt and delayed photon emission	-	at fission site	fixed % at fission site	detailed photon transport
	non-fission	User input indirect energy release	-	at fission site	-	-
		Non-fission neutron-nucleus interactions	-	-	at neutron collision site	at neutron collision site
		Capture photons from neutron interactions	-	_	fixed % at neutron collision site	at photon collision site

Energy Deposition Treatment

Energy Deposition Tally Categories

Comparison of In-Line Heating Treatments

1-D Core / Composite Shield 100 cm, reflecting at center

- 50 million neutron histories
 - 5,100 batches (100 discard)
 - 10,000 histories/batch
- $k_{\rm eff} = 1.0390 \pm 0.0002$
- Run on 16 quad-core Xenon Nehalem E5530 procs @ 2.4 GHz
 - Parallel execution on 64 cores
- Results collected over 1000 bin mesh tally
 - Normalized to 1 watt total power

Comparison of In-Line Heating Treatments

Energy Deposition Density in Model

Linear Scale

Log Scale

Comparison of In-Line Heating Treatments

	Constant Energy per Fission	Constant Indirect Energy per Fiss.	Local Photon Energy Dep.	Fully Coupled Transport
Total Run Time	582.08 s	580.76 s	587.89 s	1414.65 s
Neutron Calc.	582.08 s	580.76 s	587.89 s	958.08 s
Photon Calc.	-	-	-	456.57 s
Energy Deposition Fractio	n by Region			
Core Total	100%	100%	98.85%	97.37%
Neutron	100%	93.55%	90.25%	90.24%
Photon	-	6.45%	8.60%	7.12%
Polyethylene Total	-	-	1.15%	2.49%
Neutron	-	-	0.526%	0.527%
Photon	-	-	0.626%	1.96%
Lead Total	-	-	2.87×10 ⁻⁵ %	0.14%
Neutron	-	-	2.39×10 ⁻⁶ %	$2.31 \times 10^{-6}\%$
Photon	-	-	2.63×10 ⁻⁵ %	0.135%

Coupled Transport In-Line Heating – Heating by Category

ATR Quarter Core, NE Quadrant 2D Slice (z = 85 - 90 cm)

- 3D ATR model created for MC21
 - ~4,000 surfaces
 - ~7,000 components
- 50 million neutron histories
 - 5,100 batches (100 discard)
 - 10,000 histories/batch

•
$$k_{\rm eff} = 0.8367 \pm 0.0002$$

 Results collected over 1 million cell mesh tally (1000 × 1000)

Blue = Water; Red = Hafnium; Green = Aluminum; Yellow = Beryllium

Model and illustration courtesy of C.M. Rodenbush

Coupled Transport In-Line Heating – Heating by Category

4/22/2022

Conclusions

- Full paper describes a generalized framework for in-line treatment of energy deposition in Monte Carlo neutron transport calculations.
- Framework gives flexibility to choose, at run-time, from among four self-consistent energy deposition treatments
 - Constant energy release per fission
 - Constant indirect energy release per fission
 - Local photon energy deposition treatment
 - Fully coupled neutron/photon transport energy deposition
- Flexibility allows users to tailor accuracy of energy deposition calculation to be tailored to the needs of a particular application or to meet resource limitations.

Conclusions

- All energy deposition treatments were tested on a simple 1-D core/shield problem.
 - Within the core, all methods agreed to within 3% on integrated energy deposition and 6% on energy deposition density.
 - Treatments without explicit photon transport were 2.5x faster than the reference coupled transport calculation, but significantly under-predicted energy deposition in the shield region.
- Coupled in-line neutron / photon heating calculation for 2D ATR slice was shown
 - Results illustrate energy deposition due to various mechanisms, as well as redistribution effects due to photon transport.