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MC21MC21
Framework Overview

• Energy deposition calculations by explicit neutron/photon 
transport is expensive for large models (e.g., 3D reactor 
core model)

• Generalized energy deposition modeling framework 
allows control over the accuracy, and expense, of 
calculations at run time
– Framework supports coupled transport along with three approximate 

energy deposition treatments

– Approximate treatments neglect transport of secondary radiation(s) 
while still preserving energy

– All treatments can easily be implemented in a single code, giving users 
the flexibility to select a treatment based on need and resource 
availability.
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MC21MC21
Framework Overview

• Framework separates energy deposition into three basic 
categories.
– Common mathematical framework, but each energy deposition 

treatment uses different models for calculating deposition in each 
category. 

– Energy deposition for each category is based on standard nuclear data 
such as: reaction Q-value, KERMA (h), photon yield (γ), and energy 
release per fission (ENDF MT 458) data (f)
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Framework Overview
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Energy Deposition Treatments

• #1: Constant Energy Per Fission
– Constant (user-defined) energy release per fission (C1)

– All energy deposited at fission site
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MC21MC21
Energy Deposition Treatments

• #2: Constant Indirect Energy Per Fission
– Energy and nuclide-dependent energy release per fission (ENDF 

MT 458 data)
• Constant (user-defined) indirect energy release per fission (C2) to account 

for exothermic reactions during neutron slowing down.

– All energy deposited at fission site
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MC21MC21
Energy Deposition Treatments

• #3: Local Photon Energy Deposition
– Energy and nuclide-dependent energy release per fission (ENDF MT458 data)

– Fission fragment and beta particle energy is deposited at fission site (direct 
fission heating)

– Neutrons carry energy during transport and deposit energy at each collision
• Energy and nuclide specific KERMA data for energy release in all non-fission neutron/nucleus 

interactions

• Must normalize by keff to preserve total energy of neutron population between batches in 
eigenvalue calculations

– Photon energy is deposited where created (fission or collision site)
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MC21MC21
Energy Deposition Treatments

• #4: Coupled Neutron/Photon Transport
– Energy release the same as treatment #3

– Photons are samples at neutron collision and fission events and 
banked for transport in separate simulation
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MC21MC21
Energy Deposition Treatments

• #4: Coupled Neutron/Photon Transport
– Photon energy deposition throughout problem is normalized by 

total energy of source photons emitted, creating a photon 
redistribution function (PRF)

– PRF can be used to estimate photon energy distribution for 
subsequent neutron calculations without additional photon 
transport simulations

• PRF only needs to be recalculated when the shape and/or spectrum of the 
photon distribution has changed significantly.
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Energy Deposition Treatments
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Comparison of In-Line Heating Treatments

• 50 million neutron histories
– 5,100 batches (100 discard)

– 10,000 histories/batch

• keff = 1.0390 ± 0.0002

• Run on 16 quad-core Xenon 
Nehalem E5530 procs @ 2.4 
GHz

– Parallel execution on 64 cores

• Results collected over 1000 bin 
mesh tally

– Normalized to 1 watt total power
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Comparison of In-Line Heating Treatments
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Comparison of In-Line Heating Treatments
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Constant Energy per 
Fission

Constant Indirect 
Energy per Fiss.

Local Photon 
Energy Dep.

Fully Coupled 
Transport

Total Run Time 582.08 s 580.76 s 587.89 s 1414.65 s

Neutron Calc. 582.08 s 580.76 s 587.89 s 958.08 s

Photon Calc. - - - 456.57 s

Energy Deposition Fraction by Region

Core Total 100% 100% 98.85% 97.37%

Neutron 100% 93.55% 90.25% 90.24%

Photon - 6.45% 8.60% 7.12%

Polyethylene Total - - 1.15% 2.49%

Neutron - - 0.526% 0.527%

Photon - - 0.626% 1.96%

Lead Total - - 2.87×10
-5

% 0.14%

Neutron - - 2.39×10
-6

% 2.31×10
-6

%

Photon - - 2.63×10
-5

% 0.135%



MC21MC21Coupled Transport In-Line Heating –
Heating by Category 

• 3D ATR model created for MC21
– ~4,000 surfaces

– ~7,000 components

• 50 million neutron histories
– 5,100 batches (100 discard)

– 10,000 histories/batch

• keff = 0.8367 ± 0.0002

• Results collected over 1 million 
cell mesh tally (1000 × 1000)
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Blue = Water; Red = Hafnium; Green = Aluminum; Yellow = Beryllium

Model and illustration courtesy of C.M. Rodenbush

ATR Quarter Core, NE Quadrant
2D Slice (z = 85 – 90 cm)



MC21MC21Coupled Transport In-Line Heating –
Heating by Category 
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Conclusions

• Full paper describes a generalized framework for in-line treatment of 
energy deposition in Monte Carlo neutron transport calculations.

• Framework gives flexibility to choose, at run-time, from among four 
self-consistent energy deposition treatments

– Constant energy release per fission

– Constant indirect energy release per fission

– Local photon energy deposition treatment

– Fully coupled neutron/photon transport energy deposition

• Flexibility allows users to tailor accuracy of energy deposition 
calculation to be tailored to the needs of a particular application or to 
meet resource limitations.
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Conclusions

• All energy deposition treatments were tested on a simple 1-D 
core/shield problem.
– Within the core, all methods agreed to within 3% on integrated energy 

deposition and 6% on energy deposition density.

– Treatments without explicit photon transport were 2.5x faster than the 
reference coupled transport calculation, but significantly under-predicted 
energy deposition in the shield region.

• Coupled in-line neutron / photon heating calculation for 2D ATR 
slice was shown
– Results illustrate energy deposition due to various mechanisms, as well 

as redistribution effects due to photon transport.
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