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Plasma facing components — we have many orders of

magnitude to go
JET TER

Operates
continuously
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seconds

Materials need to be developed and tested under fusion prototypic conditions:

High fluxes, high ion fluence, high neutron fluence
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Increasing duration and hazards
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Generating Electricity from Fusion Energy Requires
Resolution of Three Scientitic/Technological Challenges

Creating and Approximate Technical Courtesy of
Sustaining a Fusion Readiness IoQey Mickey Wade
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How do we design
PFC’s for a reactore
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"Components” of PFC’s

* Plasma facing surface (tungsten? liquid lithium? RAFM steel?¢)

o Coolant (water, helium, liquid metal, molten salf)

e Infermediate thermal structure

— Must transfer heat from the surface to the coolant
— Must survive Yjust below the surface” requirements
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Examples of infermediate structure (1)

« Water cooling
- Monoblock with twisted tape

Hyper d pOTrO n Figure from A.R. Raffray, et al, “High heat flux
components—Readiness to proceed from near

term fusion systems to power plants,” Fusion
Engineering and Design, Vol. 85, pp. 93-108, 2010.

Figure from M. Richou, et al, “Acceptance
tests of the industrial series
manufacturing of WEST ITER-like
tungsten actively cooled divertor,” Physica
Scripta, Vol. 96, 2021.

Be tiles _ Hypervapotron (HVT)
Brazing

Bimetallic structure
CuCrZr/SS 316L(N)-IG

Laser welding

Twisted Tape

Figure from A. Lumsdaine, et al,

“Modeling and Analysis of the W7-X
Figure from A.R. Raffray, et al, “The ITER blanket ~ 7 Coolant channel lid Divertor Scraper Element,” IEEE

. system design challenge,” Nuclear Fusion, Vol. 54, R HGLINHIC) Transactions on Plasma Science, Vol. 42,

0014, oA < A Laser welding pp. 545-551, 2014.

External welding




Examples of infermediate structure (2) ==}

e Helium cooling

- Modular finger arrays
(HEMS, HEMP, HEMJ)

- T-fube
— Refractory foam

W tile 10 MW/m?
7 WL10

thimble

W-WL10

braze joint ——p
(crack

stopper)

WL10-Steel

braze joint

(mismatch
compensation)

Hﬁi_n T l Heout

Figure from P. Norajitra, W.W. Basuki, R. Giniyatulin, C.

Hernandez, V. Kuznetsov, |. V. Mazoul, M. Richou, L. Spatafora,

“Recent progress in the development of helium-cooled divertor
’-%8&5&{235 for demo,” Fusion Science and Technology, in press, 2015.

Figure from X.R. Wang, S. Malang, M.S. Tillack, J. Burke,
“The ARIES team, recent improvements of the helium-cooled
W-based divertor for fusion power plants,” Fusion
Engineering and Design, Vo. 87, pp. 732-736, August 2012.
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Figure from D. L. Youchison, J. M. Garde, “Thermo-mechanical
evaluation of high-temperature refractory foams used in thermal
management systems,” Fusion Science and Technology, Vol. 61,
No. 1T, pp. 322-328, January 2012.



Examples of infermediate structure (3)

 Liguid metal cooling

/" A Structural Material (e.g. F82H steel)
£ | Porous or textured surface
Liquid Lithium

Coolant (e.g. He or s-CO.) Incident
' Plasma

From M A Jaworski, A Khodak and R Kaita, “Liquid-metal
plasma-facing component research on the National Spherical
Torus Experiment,”, Plasma Phys. Control. Fusion, Vol. 55, 2013.
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Examples of intermediate sfructure (4)

Heat Exchanger

Plasma 800 K

* Molten salt cooling 12 MW/m? (~exaverage)
3 mm tungsten at

Tu_nEEen . ]_ thinnest point .
LA | 2m/s~800-875K
FLiBe flowing
poloidally
) _ | Inconel provides [ !
From A.Q. Kuang, et al, “Conceptual Design 4 cm Inconel AT — Divertor -
Stuc.1y for_ Heat Exhaust .Managgmen.t in the ARC Leg Divertor
Fusion Pilot Plant,” Fusion Engineering and ! Foot
Design, Vol. 137, pp. 221-242, 2018.
From C. Forsberg, G. Zheng, R. G. Ballinger, S. T.
L Lam, “Fusion Blankets and Fluoride-Salt-Cooled
Bulk FLiBe Entire Str:f:t“m High-Temperature Reactors with Flibe Salt Coolant:
-'";:;;r:;_;:nw - Common Challenges, Tritium Control, and
~900 K II:LiB-e - 6 Opportunities for Synergistic Development

Strategies Between Fission, Fusion, and Solar Salt
Technologies,” Nuclear Technology, Vol. 206, 2019.
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Considerations of operation time and conditions

e Short pulse operation
- Plasma interacts “weakly” with plasma facing surface only
— Anything behind first few microns is invisible 1o plasma

e Long pulse operation
- Plasma interacts strongly with plasma facing surface
— Plasma influenced by entire PFC

e LOoNng pulse nuclear operation
- Plasma interacts strongly with plasma facing surface
— Full and continuous interaction with entire PFC
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ITER Radiation Maps during operations at 5

The plasma interacts with every part of the PFC (including the
coolant). The water 1s activated.

15O(n,p)!*N— 6MeV y-ray (T,=7.13 sec.)
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Plasma Facing Surface Challenges

Inherent Interfaces (coolant & thermal
structure)

e High temperature (property window) e High pressure / high stress

* High heat-flux (thermal conductivity) e Corrosion

e Thermal shock (TS resistance) * Neutron fransmission

e Tritium retention (inventory) « Joining (tfo heat sink, TE mismatch,

thermal resistance, gas retention)

Erosion / redeposition (property changes)
« Heat removal

Plasma contamination (sputtering, etc.)

Neutron damage (property changes,
swelling, transmutation)

Helium implantation (property changes)
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Plasma Facing Surface Considerations (from Linke)

Steady state heat loads: Transient thermal loads:
up to 20 MWmZin ITER up to 60 MJm=2

(lower loads in DEMO) th _ [ (disrupt., ELMs, VDEs)
- recrystallization erma * Cracks
+ failure of joints loads ) gues‘f?gm cor

plasma
exposure

neutrons

Plasma loads:

« sputtering * up to 14 MeV

. hyc_lmgen retention + defects

* helium induced « transmutation
morphology

From Linke, et al, Matter and Radiation at Extremes 4, 056201, (2019); https://doi.org/10.1063/1.5090100
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https://doi.org/10.1063/1.5090100

Plasma Facing Surface Considerations (from Katoh)
Our challenges are complex multiple-extremes
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Coolant Challenges

Interfaces (PFM & thermal structure)

e High temperature e High pressure / high stress

e Pressure / pumping power » Corrosion

o Tritium retention * Neutron transmission
 Neutron damage / fransmutation e Tritium breeding / extraction
* EM interaction « Power generation efficiency
« Heat removal (thermal conductivity, Temp

heat capacity) Molten

el

Helium

Liquid
Metal
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Infermediate Thermal Structure Challenges

e High temperature

e High thermal gradient
e Topology

* Neutron damage (property changes,
swelling, transmutation)
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Interfaces (PFM & coolant)

e High pressure / high stress

e Corrosion

Joining (to plasma facing material)

Neutron fransmission

Fluid interaction

Heat removal



Lithium
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Some guestions

« What heat fluxes can we handle (how high can we go)¢
- Dependent on material options, coolant, joining tech, fopology
- R&D necessary — can we develop guidelinese

« How can we robustly join dissimilar materialse

« Can we examine these “components” individually, or is an
Infegrated PFC program necessarye

* “Is there a viable divertor & first wall PFC solution for |
DEMO/FSNF2" (or FPP — show stopper) i fusionss o1 104024 - o

o Are there tools for designing better PFC’s?
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Heat sink topology design

Design domain

Heat sink

Heat source
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OAK RIDGE Figures from H. Li, X. Ding, D. Jing, M. Xiong, F. Meng, “Experimental and numerical investigation of liquid-cooled heat sinks
%Naﬁonal Laboratory designed by topology optimization,” International Journal Thermal Sciences, Vol. 146, 2019.




Heat sink test

Qutlet

(d)

OAK RIDGE Figures from H. Li, X. Ding, D. Jing, M. Xiong, F. Meng, “Experimental and numerical investigation of liquid-cooled heat sinks
National Laboratory designed by topology optimization,” International Journal Thermal Sciences, Vol. 146, 2019. ition of Fusion Device




Comparison of results

Channel layout Numerical results Experimental results
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Summary and Conclusions

e Functioning PFC solutions are essential for long pulse devices
and any fusion pilot plant.

« We have very few validated solutions for long-pulse devices,
and even these solutions cannot work for a fusion pilot plant.
— Most first step fusion power devices do not plan to have reactor

relevant PFCs

 Reactor relevant PFC will likely be multi-material, complex
topology components.

e Integrated R&D and implementation on long pulse devices
and test stands should be accelerated (proactively).

o All three aspects of PFCs — surface, coolant, intermediate
thermal structure — need R&D, with integrated solutions.
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