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@ Importance of recycling control

Kamada, Atomic Energy Society 2004 JT—6OU

Pellet injection 1

..... | IR U R U R PR |

u2
ne
(1019 m3)

Pt MW)
(keV)

T
e
o
o

GAS
(Pam’/s)

‘1416 18 2 22 24 26
ne(1019 m”)

- L —
O O1 = UI1N U1 ONROXOONA ONROOONRO = N W A~

Eapamrenanen

o = N

20
IDa (10
2

ph/m~srs)

£ 10 1520 55 30 3540 :
NE 1) Edge plasma pressure is degraded

at the wall saturation.

Wall saturation was observed.

Gas feed was not required in the latter phase.
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2min. discharge

28min. discharge

Phased wall retention is observed in
long pulse discharge of LHD plasma

G. Motojima+, J. Nucl. Mat. 463 (2015) 1080.
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The difference of the retention characteristics of deposition layer on the plasma facing wall qualitatively
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explain the phased wall retention.
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@ Vacuum pumping system in LHD

Divertor pumplng system

4

_»Dome structure

Divertor plates

90
Main pumping system
~250 m3/s

< 103 Pa

low neutral compression

8 0

inboard outboard

210\—/ 330

240 300
270

Particle flux localized in inner toroidal section
~80 m3/s (Cryo-sorption + NEG pumps)
<1 Pa

High neutral compression possible in divertor pumping
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@ General global particle balance

I'rperdt ~ | I'wandt + | I'exdt

DEMO reactors, wall recycling should be 1 in terms of tritium
inventory and in steady state conditions.

[eyerdt ~ / @dt

g dt = FEXmain dt + FEXdiv dt

Main exhaust

@ Currently, wall pumping is predominant in LHD. However, in

system pumps Divertor pumps
Low compression High compression
6/24 Divertor pump is important tool for density control
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2. Development of divertor pumping in LHD
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(@) Improved in-vessel cryo-sorption pumps

- installed inside the divertor

Old prototype Newly improved type

\

Divertor plate Dome strycture

Plasma

Divertor-legs

Activated carbon

N2-cooledshield =~} -~~~

Cryo-sorptionpump  Cryo-sorptionpanel  Divertor plate
In vessel

T. Murase et al, Plasma. Fus. Res. 11, (2016) 1205030.

Cryo-sorption panel
100
b £ shield In vessel

The main characteristics of the development: G. Motojima et al, 2018 Nucl. Fusion 58 014005.
(1) Finding of new activated carbon — high pump speed and capacity

(2) The water-cooled blinds are no longer needed — high conductance

(3) The area of the cryo-sorption panel is enlarged — high capacity

Cryo-sorption pumps have been installed in five sections
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High performance of divertor pumping
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G. Motojima et al, 2018 Nucl. Fusion 58 014005.

Cryo-sorption pumps have been installed
in five sections.

v' Compared with FY2014, the pumping
speed was seven times higher in
hydrogen, which is close to the initial
design target of 100 m3/s in ten toroidal
sections.

v' The pumping capacity is identical to 20
days of fuel amounts for high density
experiments in the LHD.

FY2014 (18th cycle) 3,320 10

FY2016-Now
(19th cycle-)

~58,000 675
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@ Specification of divertor pumping in ITER, JT-60SA

soxeMo ITER

JT-60SA (JT-60U)

Kamada, Atomic Energy Society 2004

R.J. Pearce+, FED 2013.
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v" In terms of He exhaust, the total gas throughput (H2, D2 and T2) is
50 Pa m3 s*' (assuming 10% concentration).

v" However, in steady state conditions, 200-500 Pa m3 s is required

v' 200 m3 s! required (assuming divertor pressure of 1 Pa).
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Wall saturation observed.
No gas puffing required in the second half of the
discharge phase. ->Decreased plasma pressure

around JT-60SA, up to 100 m3/s planned.
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JT-60SA Plant Integration Document (PID) V3.9
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3. Density control and new physics findings using divertor pumping
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Low recycling state was observed by high-

o o npAl performance divertor pump.
\_/—/_
G. Motojima+, Nucl. Fusion 59 (2019) 086022. v The effective particle
. Y —— , , .
: @ Peliet w/o CHD pumping confinement time (tp) was
[ B @ Pellet w CHD pumping
25} &b | ™ GCes puifwio CHD pumping evaluated from the decay of
i N B Gas puff w CHD pumping .
o} plasma density.
" : _
:/ 15 » §© * e
PQ- Without divertor Tp o dne
1F my .. pumping d+
[ B
- ° ) . .
05F '“ ..... :With divertor v" A lower 1" was obtained with
b T the divertor pump than without
602 4 6 8 10 divertor pumping.
n. (10" m™)
1220 Low recycling state is possible by the divertor pump.
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@ Application of divertor pumping to 40 seconds plasma discharges
-

Al
& G. Motojima+, 2021 Plasma Fusion Res. 16 1202014.
#161118, 161149

(@) ECH power (MW) . . .
o5k wio divertor pump v The magnetic configuration was selected at
with divertor pump Rax — 3.6 m.
0'-- o aa l e s b s bl sl aalaay La i
TSR ST v" In the absence of the divertor pumping,

with divertor pump

even without gas puffing, the plasma
density was increasing, and the density was

not controlled well by density feedback,
leading to plasma radiation collapse.

T v" On the other hand, if the divertor pumping
is working, density feedback control is well

10 prorrrrer e operated with a stable hydrogen gas puff.
Hd)||Gas puff amount (10” atoms/s
5 ' with divertor pump :
0 S e w/o divertor pump| |
13/24 0 5 10 15 20 25 30 35 4
G. Motojima Time (S)
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@ Control of plasma particles by powerful vacuum
pumping

oxete—
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No impact of divertor pump on edge transport
But strong impact on core transport
(reduction of thermal diffusivity in the core)

Divertor cryogenic vacuum
pump contributes a better
density control in the long
pulse discharge.

Without divertor pump
—> Plasma collapse at 34
sec

Without divertor pump
—> No collapse until the
end of discharge

Clear edge-core transport
coupling
(evidence of non-local transport)

G.Motojima, et al, Phys. Scr. 97, 035601 (2022)
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4. Development of neutral pressure gauge
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@ Bad performance of pressure gauges during long-pulse |PP
Pt operation

- Standard

version used in the
LHD

Al

but the cathodes are
frequently deformed

by the j x B force ‘ :

Analysis of the bad performance of Ohmically heated cathodes shows

the need for a better design’
1) U. Wenzel+, Rev. Scient. Instrum. 92, 083510 (2021).
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ASDEX
Upgrade

New designs are currently tested in the LHD

For long pulse operation:

Indirectly heated
cathodes for better
stability in strong
magnetic fields

Carbon blocks Ohmically
are heated.
They heat the emitter.

Wendelstein 7-X design ITER design
rod cathode sandwich cathode
with LaB6 emitter with ZrC emitter
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@ Stable behaviour of the ITER design in the U L

o, moAl divertor of LHD
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5. Development of activated carbon for cryo-sorption pump and its to
multi-purpose development
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(’@) Development of adhesion technique
o ano A with inorganic of indium
The contamination of vacuum vessel by outgassing from cryo-sorption pump is a problem.

r R

o - activated carbon

e S e ol A
»
" 4

Out gassing by organic adhesion -> developed of adhesion technique with inorganic of indium.

Inorganic adhesion technique is one of the solution.
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’* o
(@ Further development of activated carbon

D
— Pore distribution of activated carbon

. / . . .
Micro pore The characteristics of pumping speed |
depends on the area of micro pore, which
Meso pore Macro pore is related to a physical abso.rption. |
v" The characteristics of pumping capacity
o A depends on the area of meso-macro pore.

< B

v

The control technique of the
distribution of pore diameter
suitable for activated carbon is
being established in NIFS.

dV(logd) (cc/g)

Pore Diameter (nm)
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@ Utilization of pore-controlled activated carbon

WJ/E Manufacturing methods to produce porous structures have been established industrially
such as CNovel™. 1 . . .
@ cNovel™
__osl B Commercial ]
e v o
S
= 06} o~ @
2 a®®
g =
o 04¢F - .
£
2 O
£ 02} ]
O
O
0 1 A R .

1x10*  1x10®  1x102 1x10'  1x10°
Vacuum Pressure (Pa)

v The pumping rate of CNovel™ was maintained higher than that of the commercial
activated carbon.

v" This suggests that pore-controlled activated carbon such as CNovel™ could be
2024 US€d as activated carbon in cryo-sorption pumps.
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@ Spin-off of activated carbon study SCORE

Supported by JST Score, 2021
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Summary

W/L_HD, development of divertor pumping has been strongly enhanced. Low recycling state has been

achieved.
¢ Divertor pumping was applied to 40-second long pulse ECH. Density was well-controlled by gas
puffing using the feedback signal.

¢ A heat transport analysis shows that divertor pumping did not affect edge electron heat
conductivity, but it led to low electron heat conductivity in the core region with the formation of the
electron-internal-transport-barrier. The results suggest emergence of the core-edge coupling caused

by the divertor pumping.

v" Technical development in divertor pumps which is essential for the steady state operation is shown.
¢ An organic adhesive-free bonding technique, which enables outgassing-free, was developed for
divertor cryo-sorption pump in LHD. The technique, which avoids the contamination of vacuum
vessel by outgassing, is acceptable in future fusion devices.

¢ The pore size is optimized for the cryo-sorption pump. R&D shows that the pumping capacity with
optimized activated charcoal is higher than that in commercially available activated charcoal. The

technique contributes to the high performance of the vacuum pumps.
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@ Neutral particle compression by closed divertor (inner toroidal section)
-

e

Gas
Open divertor Closed divertor

Neutral pressure in closed
and open divertor

@ 1 pclosed X - ‘ Significant pressure increase in the closed divertor
Y open ——+ R o . .
S o1l . 5o _ Compression is 10~20 times higher
0 K ol + than that in the open divertor.
o
s 0.01 g
3 T+t #
c + ++ +
0.001 ] : : e S. Masuzaki et al,, PFR 6, (2011) 1202007.
19,3 10 G. Kawamura et al, Contrib. Plasma Phys. 54, (2014) 437.
ne [107°/m°]
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w
\ Plasma /
Gas
Open divertor Closed divertor
Particle balance in 10 Hz pellet fueling Outcome expected:
30 (102 Hl) ' ;
9 j\ I dt (a) strong pumping
S =0
G20 Z
P 4
) / Nl’ Wall retention
510 | / e d i i
] J =) PP ,
IS dominant
2 1
0 1 1 1
. S. Masuzaki et al,, FED 85, (2010) 940.
27124 Time (sec) S. Masuzaki et al, FST 58, (2010) 321.
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Improvement of control of edge neutral particles by

= Confinement improvement
4 \ = Stable sustainment of high density plasma /

Cryo-sorption pump in
dome structure

. 4

Goal of pumping speed
Total 100 m3/s

(Fueling rate of 10 Hz pellet

10 Pa m3/s at ~0.1Pa)
=10 m3/s per section
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"
(@) Physical Mechanism for Nonlocal Transport Phenomenon

oxert— Core: Change in T,
Courtesy of N. Tamura

Edge: Perturbation

1. Te gradient is enlarged

A A A A A 2. T./T; decreases...
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vV V¥V -

v
me re/
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I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Understanding of a formation condition of the unstable transport state(easily-linkable
condition) and a coupling mechanism between the edge and the core could be a key issuel

Divertor pumping changes the edge plasma?
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€ Plasma facing components
» Total area of PFCs: 700 m?

» First wall panels: SUS316L (~650 m?)

» Divertor plates: Graphite (~50 m?)

V/

Plasma |
PIasma volume




Long pulse discharge in LHD

G. Motojima et al., IAEA 2016.

s o Np AT G. Motojima et al., JNM 2017.
_KE ] M. Oya et al., JNM 2017.
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The difference of the retention characteristics in the plasma facing materials
and the difference of their temperature may qualitatively explain the phased
wall retention.
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Demonstrated viral inactivation

EMERGE)  BRHRFLUT

— —

No viruses detected

~ (below detection limit) if an
activated carbon cartridge is

' present

N

Gelatin filter
w Vinyl tape

EMRG) 1.1 x10° PFU/ml

Viruses detected in the

absence of activated carbon
cartridges

> ey

” # Dry pump

downstream ; AL 1.3 x10° PFU/ml
flowmeter :

_hdownstream
y \ Nebullzer§ pressure gauge

ET4M well: 10°°

v Experimental infection of MDCK cells with mfluenza A virus (strain H1N1/PR-8)
v’ The cleaners have demonstrated that they can inactivate viruses

Undiluted solution
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Radial profile and time evolution of 7y,

so,  NDA! . S RLEIE EI —
__KE___— @G.Motojima+ Phys. Scr. 2022 4 reff/a99 0.20 ]
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v' Core ¥, is lower in the case with divertor pumping, although there is no differences in edge . with and
without divertor pumping, which suggest the strong coupling between core transport and boundary
condition controlled by divertor pumping.

v These results are consistent with the fact that high ion temperature plasma with ion-ITB has

22/24 been achieved by reducing the wall recycling in LHD.
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@ Utilized In-vessel cryo pump

* Cryo-Condensation
Used in DIII-D and EAST
A huge system of liquid helium is required

+ Cryo-Sorption e
Applied in LHD
Out gassing by organic adhesion
-> developed of adhesion technique with =~ "o enerer
iInorganic of indium. o=

b~ =78
G. Motojima
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@ 3. Application to density profile control in

S0, enpt! high density plasmas by pellet injection and
— divertor pumping
S 5:
E 30
o 4} ~
E | £ 25
o f 99 20}
v% 2t g 15;—
s | = 10}
=® 1 = |
O: ------------------- ] OE....
0 5x10° 1x10% 1.5x10% 2x1o2
"o (Pa) o o (10 m'3)
ge

v High line averaged density plasma over 1x1020 m-3is produced by pellet fueling.
v Neutral pressure and edge density can be reduced in divertor pumping under the
similar pellet fueling condition. However, core density is also reduced.

Discussion regarding the reason
34/16
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3. Difference of profiles

Cryo OFF
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v' Edge density is lower with divertor pumping. On the other hand, electron temperature is higher.
v' Higher temperature causes the shallow pellet penetration.
The control of neutral particle is important, considering the control of the pellet penetration

S I I
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=~ .51 @ CryoOFF
46_ I
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©
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S 3 '- Cryo ON
S [ ® Y
o Z

0 ......... IR PP R Laaay

0 1 2

T (keV)

Pellet penetratlon depth

is different.

depth. -> The short time gas puffing and steady divertor pumping likely will be a
candidate for the dynamic edge density control tool.
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v’ Divertor pressure is 10 times higher than the pressure out of divertor region.
v’ Divertor pressure increases in inner magnetic axis configuration.
v Neutral compression is higher in inner magnetic axis configuration (10-20).
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T. Morisaki+, NF 2013
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v' 90% of the diverted particles in the inward shifted configuration at R,, = 3.60 m go to the inner half of the torus.
v" On the other hand, at R,, = 3.90 m, only 60% of the diverted particle flow to the inner half of the torus.

Inward shifted-configuration is preferable for neutral particle control, if divertor
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pumping can work efficiently.
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Particle exhausted amount

G. Motojima+, 2021 Plasma Fusion Res. 16 1202014.
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Edge pressure and heat flux analysis
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v' Averaged n, linearly increases with edge n.. Edge density is a key to control averaged density.

v In both cases, edge pressure is increasing with time. This characteristics looks different from the
result of JT-60U. In the case without divertor pump, density increase/temperature decrease is
seen. On the other hand, in the case with divertor pump, stable density and temperature are
sustained.

v" A significant difference of T.-gradient is not observed in edge.
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The relation between confinement and edge density control will be further investigated.
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Discussion: comparison on timing of stable density
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Density and temperature profiles
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