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* Issue for LPO

- How to control particle balance

- Modelling and microscopic observations
- Global modelling for particle balance
*LPO in QUEST

 Summary
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» Steady State operation (SSO) of high performance plasma is one of the most
important issues for fusion power plant.
High power injection (a heating in future) leads to high impact on PFWs.

* To reduce T retention in carbon, PFWs would be composed of a low activation and

low sputtering metal such as tungsten. 7
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What is the key to overcome the difficul {{:1>

EAST#106915 2021-12-30 21:55

« Control of plasma parameters to obtain high performance has been addressed.

 Lithium dropper has been shown to lower fuel recycling on EAST, and an advanced
confinement mode (the I-mode) could be maintained for more than 1000s.

« -> Recycling control is the key to overcome the difficulties.

Experimental limitations of high B,
discharges in EAST 2015 campaign
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Control of fuel recycling is the key to -1:1e

 Actually, fuel particle balance is a reason why the longest discharge was terminated.

* Fuel particles could be stored in PFCs and the amount is frequently more than 100
times larger than particle inventory in the plasma -> Wall pumping is significantly
higher than the capability of the vacuum pumping system.

« Control of fuel recycling is the key to SSO of high performance plasmas.
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The hot wall is capable to be at R.T.<Tw< /21,4
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- H 2018 FED
Control knobs for particle balance Hasegawa 2022 FED

« The temperature of the hot wall has been controlled by heaters and water flows.

* The water flow is remotely switched during the discharge and the fueling rate is
feedback controlled by a calibrated gas-flow controller to a pre-programed target
value.
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Monitoring of PFC surface condition. H barrier was discovered between deposition

Mixed material layer 4.5nm  Impurity deposited layer 17.7 nm Impurity deposited layer 14 nm

"~ [ b E- " layer and metal substrate.

How to control particle balance

urity deposited layer impurity deposited layer,
2
5x10 [ '
£
P
o 0 1x10
NP o
2 i
= 5
o ] =
-
il
0

O A & e £ 00 04 08 12 0 50 100 150 200 250 300
Fig. 4. Cross-sectional view using FIB (Upper row) and microstructure images (Lower row) for W samples placed in QUEST during 2016A/W campaign. DFI and depﬂl { I_,]_m} ‘

indicate dark field image and bright field image, respectively.
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Fig. 7. Hydrogen TDS spectra for W samples exposed to QUEST H plasma.
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A wall model with hydrogen barrier (HB) 1S | (][I

Hanada 2019 NF

In this model, H atoms basically move diffusively and don’t  d(Hy + Hr) . k 12
transport across the boundary between the deposition layer dt mT sz
and the SUS substrate due to high transport potential. Release due to recombination
H,, and H; are total numbers of H atoms in deposition layer. Influx to the deposition layer
POteAntlal Deposition layer SUS substrate ﬁ — al 1 — ﬂ —yH
I dt v 9 r
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1 Diffusion | — Hy, :the number of H dissolved in wall material
| e e Hp :the number of H trapped in defects

H?2 :the upper-limit number of Hy
[}, :net influx per unit area into wall material
S : surface area

| > k : surface recombination coefficient of H atoms

Distance from wall surface dp : thickness of deposition layer
a : H trapping rate ¥ : H de-trapping rate
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The H barrier model well-estimates parti balance
Hanada 2017 _NF
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Hanada 2019 NME

How to estimate particle balance Hanada_2019_NF
Hanada 2022 NME

* [,, can be monitored by fuel released just after wall-saturated discharge.
« T,y dependence of surface recombination coefficient has been measured on QUEST.
* Measured surface recombination coefficient has positive tendency of T,,, on QUEST.
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Surface recombination is significantly acted by Yue 2020_PFR

sticking potential due to surface conditio
« Sticking potential, E., is measured with FESTA for the specimen exposed QUEST
plasmas without exposure to the air.

48772 Flux

. . . - 18
« Wall temperature, T, is a key to controlling fuel recycling.
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Global fuel recycling on QUEST is predi - {-1. BEEIEtEw7RNY

» Global model has been developed to check fuel particle balance quantitatively.
» The global model could reconstruct fuel particle balance and quantitatively clarify the
effect of wall pumping on particle balance.
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T,y control assists to extend pulse ation o o0
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Steady State operation (SSO) of high performance (HP) plasma is one of the most
iImportant issues for realizing fusion power plant.

Recycling control is a key to resolve the issue.

QUEST has been equipped with capability for wall temperature regulation since
2015.

QUEST wall was partially covered by plasma induced deposition layer and H
transport barrier was discovered between the deposition layer and metal substrate.
The H barrier model was confirmed in QUEST experiments (post-Mortem analysis of
plasma-exposed material has been conducted).

Fast Ejection System for Targeted sAmple (FESTA) has been developed to measure
H emission from the sample.

Global model has been developed to check fuel particle balance quantitatively.

The global model could reconstruct fuel particle balance and quantitatively clarify the
effect of wall pumping on particle balance.

6h discharge could be achieved at TW<473K.

Higher T,, reduces pulse duration, but T,, control can assist to extend it.



	IAEA_TM_SSO 2022.11.14-16  @Vienna
	Acknowledgement
	Contents
	Motivation
	What is the key to overcome the difficulties. 
	Control of fuel recycling is the key to SSO
	QUEST has been equipped with a hot wall since 2014.�The hot wall is capable to be at R.T.<Tw<773K.
	Control knobs for particle balance
	How to control particle balance  
	A wall model with hydrogen barrier (HB) is proposed
	The H barrier model  well-estimates particle balance
	How to estimate particle balance  
	Surface recombination is significantly affected by sticking potential due to surface conditions.
	Global fuel recycling on QUEST is predicted
	TW control assists to extend pulse duration
	Summary

