Control of fuel particle recycling using the hot wall on all-metal plasma facing wall in QUEST

K. Hanada^a, M. Hasegawa^a, N. Yoshida^a, H. Idei^a, R. Ikezoe^a, T. Onchi^a, K. Kuroda^a,
M. Oya^b, Q.Yue^b, S. Kojima^c, Y. Oya^d, T. Shikama^e, A. Kuzmin^e, N. Yoneda^e, I. Takagi^e,
M. Miyamoto^f, A. Hatayama^g, K. Hoshino^g, T. Ido^a, Y. Nagashima^a, K. Nakamura^a,
H. Watanabe^a, K. Tokunaga^a, S. Kawasaki^a, K. Kono^a, A. Higashijima^a, T. Nagata^a,
S. Shimabukuro^a, A. Ejiri^h, Y.Takaseⁱ, S. Murakami^e, X. Gao^j, H. Liu^j, J. Qian^j, R. Raman^k, and M. Ono^l.

^a RIAM, Kyushu Univ., Japan, ^b IGSES, Kyushu Univ., Japan, ^c QST, Japan, ^d Shizuoka Univ., Japan,
 ^e Kyoto Univ., Japan, ^f Shimane Univ., Japan, ^g Keio Univ., Japan, ^h Univ. of Tokyo, Japan, ⁱ Tokamak Energy.,UK, ^j ASIPP, China, ^k Univ. of Washington, USA, ^l PPPL, USA

Thanks to the collaborators of QUEST project

- Motivation
- Issue for LPO
- How to control particle balance
- Modelling and microscopic observations
- Global modelling for particle balance
- LPO in QUEST
- Summary

Motivation

- Steady State operation (SSO) of high performance plasma is one of the most important issues for fusion power plant.
- High power injection (α heating in future) leads to high impact on PFWs.
- To reduce T retention in carbon, PFWs would be composed of a low activation and low sputtering metal such as tungsten.

What is the key to overcome the difficulties

- Control of plasma parameters to obtain high performance has been addressed.
- Lithium dropper has been shown to lower fuel recycling on EAST, and an advanced confinement mode (the I-mode) could be maintained for more than 1000s.
- -> Recycling control is the key to overcome the difficulties.

Experimental limitations of high β_N discharges in EAST 2015 campaign

Gao_2017_Nucl._Fusion_57_056021

Advanced Fusion Research Center

Control of fuel recycling is the key to SSO

- Actually, fuel particle balance is a reason why the longest discharge was terminated.
- Fuel particles could be stored in PFCs and the amount is frequently more than 100 times larger than particle inventory in the plasma -> Wall pumping is significantly higher than the capability of the vacuum pumping system.
- Control of fuel recycling is the key to SSO of high performance plasmas.

QUEST has been equipped with a hot wall since 2014 The hot wall is capable to be at R.T.<Tw<773K

K. Hanada et al Nucl. Fusion 57 (2017) 126061 Y. Takase et al. Nucl. Fusion 57 (2017) 102005

Water cooled limiter

Hot wall

Control knobs for particle balance

Hasegawa_2018_FED Hasegawa_2022_FED

- The temperature of the hot wall has been controlled by heaters and water flows.
- The water flow is remotely switched during the discharge and the fueling rate is feedback controlled by a calibrated gas-flow controller to a pre-programed target value.

Fig. 2. (a) Schematic 3D view of one section hot wall, (b) sheath heater profile (thick lines), and (c) schematic cross-sectional view of hot wall with water cooling channels.

Fig. 3. Example interfaces for controlling hot-wall cooling system: (a) status of motor valves and (b) cooling-water temperature.

Fig. 5. Waveforms for 1,000 s plasma discharge with gas fueling feedback control: (a) plasma current, (b) plasma H α emission and (c) fueling rate induced by mass flow controller.

Advanced Fusion Research Center

How to control particle balance

5x10

D density (m⁻³)

0.0

Oya_2019_FED Koike_2021_NME Koike 2022 FED

Hanada_2015_JNM

Hanada_2019_NF

 $N_w(t) = \frac{\sqrt{\Gamma_{in}}}{\sqrt{k}} \tanh \sqrt{\Gamma_{in} k t}$

Monitoring of PFC surface condition.

Fig. 4. Cross-sectional view using FIB (Upper row) and microstructure images (Lower row) for W samples placed in QUEST during 2016A/W campaign. DFI and indicate dark field image and bright field image, respectively.

650 K desorption rate / 10¹⁷D₂m⁻²s 1.2 1.0 В 0.8 0.6 0.4 uterium 800 1000 400 600 600 1000 800 400 Temperature / K Temperature / K Fig. 7. Hydrogen TDS spectra for W samples exposed to QUEST H plasma Fig. 8. Deuterium TDS spectra for W samples exposed to QUEST H plasma with tional 1 keV D₂⁺ implantation

-SHU UNIVERSITY EXPERIMENT WITH

Hydrogen desorption rate / 10¹⁷H₂m⁻²s⁻

1.0

0.5

H barrier was discovered between deposition layer and metal substrate.

550

1 Fusion Research Center

A wall model with hydrogen barrier (HB) is proposed

In this model, H atoms basically move diffusively and don't transport across the boundary between the deposition layer and the SUS substrate due to high transport potential. H_w and H_T are total numbers of H atoms in deposition layer.

 H_W :the number of H dissolved in wall material H_T :the number of H trapped in defects H_T^0 :the upper-limit number of H_T Γ_{in} :net influx per unit area into wall material S : surface area k : surface recombination coefficient of H atoms d_R : thickness of deposition layer α : H trapping rate γ : H de-trapping rate

Advanced Fusion Research Center Advanced Fusion Research Center

The H barrier model well-estimates particle balance

Hanada_2017_NF

How to estimate particle balance

- Γ_{in} can be monitored by fuel released just after wall-saturated discharge.
- T_w dependence of surface recombination coefficient has been measured on QUEST.
- Measured surface recombination coefficient has positive tendency of T_{W} on QUEST.

Surface recombination is significantly affected by Yue_2020_PFR sticking potential due to surface conditions

- Sticking potential, E_C, is measured with FESTA for the specimen exposed QUEST plasmas without exposure to the air.
- Wall temperature, T_W , is a key to controlling fuel recycling.

Global fuel recycling on QUEST is predicted Hanada_2021_NME

- Global model has been developed to check fuel particle balance quantitatively.
- The global model could reconstruct fuel particle balance and quantitatively clarify the effect of wall pumping on particle balance.

Takase_2022_NF Tw control assists to extend pulse duration Hasegawa_2021_PFR

rate by MFC, and (d) total pressure.

Summary

- Steady State operation (SSO) of high performance (HP) plasma is one of the most important issues for realizing fusion power plant.
- Recycling control is a key to resolve the issue.
- QUEST has been equipped with capability for wall temperature regulation since 2015.
- QUEST wall was partially covered by plasma induced deposition layer and H transport barrier was discovered between the deposition layer and metal substrate.
- The H barrier model was confirmed in QUEST experiments (post-Mortem analysis of plasma-exposed material has been conducted).
- Fast Ejection System for Targeted sAmple (FESTA) has been developed to measure H emission from the sample.
- Global model has been developed to check fuel particle balance quantitatively.
- The global model could reconstruct fuel particle balance and quantitatively clarify the effect of wall pumping on particle balance.
- 6h discharge could be achieved at TW<473K.
- Higher T_W reduces pulse duration, but T_W control can assist to extend it.