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1056 s plasmas in EAST superconducting tokamak

✓ Double Null, 1 MW LHW + 0.4 MW ECH

✓ Stable density control during 1056 s discharge

✓ Recycling control: Rglobal ~ 0.95 – 0.97
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Recycling control strategy

Recycling flux depends on

① Particle exhaust

② Wall reflection

③ Wall outgassing

➢ Fuel retention/inventory

➢ External fueling efficiency

➢ Wall temperature

Integrating methods to control different recycling processes.

①②

③

Recycling control is vital for long pulse plasma operation.

𝒅𝑵𝒆

𝒅𝒕
= (Rglobal − 1) ∙

𝑵𝒆

𝝉
𝒑

+Ф𝒆𝒙 ∙ 𝒇𝒆𝒙



4

Outline

❑ Recycling control methods in EAST

❑ Influence of plasmas on recycling

❑ Recycling control for long-pulse discharges 

❑ Summary
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EAST divertor and wall conditioning system

W divertors since 2021 with actively cooling

 In-vessel div. cryopumps: 75×2 m3/s

 Advanced wall conditionings

➢ GDC & ICWC under strong Bt

➢ Lithium coating & real-time injection

W

Mo

W

Since 2021

He-ICWC in BtGDC in BtHe-GDC
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1A*4
3A*4

6A*4GDC ICWC

40 kW ICRF power

Discharge cleanings to remove retention

He-ICWC in Bt

 Both GDC & ICWC works well under strong Bt

 Higher efficiency of GDC due to better homogeneity

 GDC & ICWC to remove deuterium retention

➢ between shots without any change of Bt

➢ during night to decrease deuterium retention

➢ assist lithium coating

GDC in BtHe-GDC
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Divertor cryopumps and magnetic configuration

➢ Dα: Recycling + external injection

➢ Decrease div. pressure by div. cryopumps 

to control recycling

Recycling control capability

➢ Rglobal ~ 0.97 – 1.00

➢ LSN-H > LSN-V

➢ DN-H > USN > DN-V

➢ Tiny difference

V

H
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Lithium real-time injection

 Lithium coating wall condition

 DN, 0.3MA, 1.8×1019 m-3

 1.5MW LHW + 0.5MW ECH

 Lithium real-time injection

 Enhanced wall pumping by lithium injection

Wall pumping rate proportional to Li-II

 Rglobal decreased from 0.98 to 0.86

 Very strong recycling control by lithium injection

t = 21 st = 21 s

Time (s)
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EAST fueling system

 Gas puffing (GP), Supersonic Molecular Beam Injection (SMBI), Pellet Injection (PI)

High fueling efficiency → low retention

→Depress wall outgassing

→ Improve recycling control

~ 40%
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①②

③

Recycling control methods in EAST

① High particle exhaust rate

➢ Divertor cryopumps: 75m3/s×2

➢ Magnetic configuration optimization

② Low wall reflection rate

➢ W (0.9) → Lithium (0.1)

➢ Lithium coating & real-time injection

③ Low wall outgassing rate

➢ GDC & ICWC + Lithium

➢ Gas puffing → SMBI

➢ Actively cooling of divertors
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Influence of heating power on recycling

 4 – 12 MW source heating power

 No change on wall pumping with power

 Increased div. pumping rate with power

 Rglobal decreased with increasing power

t = 6.0 s

0.5 MA, DN, ne ~ 4.5×1019 m-3
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Influence of plasma density on recycling

 No obvious of wall pumping with ne

 Increase of div. pumping with ne

 Higher ne→ lower Rglobal

 Recycling control is more difficult in lower 

density operation0.3 MA, Double Null, ~10MW
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Recycling control in 1056 s plasmas

✓ Double Null, 1 MW LHW + 0.4 MW ECH

✓ Stable density control during 1056 s discharge

✓ Real-time lithium injection

✓ ne control via SMBI: (1.8 → 1.4 )×1020 D/s

✓ Wall saturation: ~700 s, 25% pumping

✓ Recycling control: Rglobal ~ 0.95 – 0.97
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Particle balance in long pulse discharge

14.1%

Ф𝑤𝑎𝑙𝑙(−2.8%) =Ф𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 (11.3%) − Ф𝐷𝑖𝑣. (14.1%)

Ф𝑤𝑎𝑙𝑙 (−2.8%) =Ф𝐿𝑖𝑡ℎ𝑖𝑢𝑚 10.5% − Ф𝑂𝑢𝑡𝑔𝑎𝑠 (13.3%)

𝒅𝑵𝒆

𝒅𝒕
= Ф𝒆𝒙 ∙ 𝒇𝒆𝒙+ (Rglobal − 1) ∙

𝑵𝒆

𝝉
𝒑

= 0

1.3×1021 D/s

3.3%

8.0% 2.8%

96.7%

13.3% - 10.5%

Normalized by Ne/τp
Recycling control mainly by lithium + Div. cryopumps

EAST #106915 @ 1000 s
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Recycling with first wall temperature

➢ Hα+Dα = Recycling (baseline) + SMBI

➢ Recycling: increased by 8%

➢ H/(H+D) increased by 30% 

➢ Hα+Dα decreased from ~700 s due to reduced SMBI

Recycling

+ SMBI

➢ Successful global recycling control

➢ Slightly increasing fuel recycling with 

wall temperature / accumulated retention 
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Summary

 Fuel recycling is related to plasma heating power & density

 Effective recycling control in EAST tokamak

➢ Intensive discharge cleanings to decrease retention

➢ High efficiency SMBI to further control retention

➢ Lithium coating & real-time injection & divertor cryopumps

 Successful recycling control in 1056 s discharges

➢ Wall changed to outgassing from ~700 s

➢ Outgassing rate: 13.3%

➢ Successful recycling control: div. cryopumps 14% + lithium 10.5%

➢ Slightly increasing fuel recycling with wall temperature/accumulated retention
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Thank You


