Steady state control of fuel recycling for long pulse discharges in EAST tokamak with full metal first wall

by

Yaowei Yu^{1*}

Mizuki Sakamoto², Deze Zhou¹, Bin Cao¹, Guizhong Zuo¹, Rui Ding¹, Juan Huang¹, Jiansheng Hu¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China ²2Plasma Research Center, University of Tsukuba, Japan

Presented at the Technical Meeting on Long-Pulse Operation of Fusion Devices Vienna, Austria, IAEA Headquarters

November 2022

*E-mail: <u>yuyaowei@ipp.ac.cn</u>

1056 s plasmas in EAST superconducting tokamak

- ✓ Double Null, 1 MW LHW + 0.4 MW ECH
- ✓ Stable density control during 1056 s discharge
- ✓ Recycling control: $R_{global} \sim 0.95 0.97$

Recycling control strategy

Recycling control is vital for long pulse plasma operation.

Recycling flux depends on

- 1 Particle exhaust
- (2) Wall reflection
- ③ Wall outgassing
 - Fuel retention/inventory
 - External fueling efficiency
 - ➢ Wall temperature

Integrating methods to control different recycling processes.

- Recycling control methods in EAST
- Influence of plasmas on recycling
- Recycling control for long-pulse discharges
- Summary

Recycling control methods in EAST

- Influence of plasmas on recycling
- Recycling control for long-pulse discharges
- Summary

EAST divertor and wall conditioning system

- □ W divertors since 2021 with actively cooling
 □ In-vessel div. cryopumps: 75×2 m³/s
- □ Advanced wall conditionings
 - \succ GDC & ICWC under strong B_t
 - Lithium coating & real-time injection

Discharge cleanings to remove retention

- **D** Both GDC & ICWC works well under strong B_t
- □ Higher efficiency of GDC due to better homogeneity
- **GDC & ICWC to remove deuterium retention**
 - \succ between shots without any change of B_t
 - during night to decrease deuterium retention
 - > assist lithium coating

Divertor cryopumps and magnetic configuration

Recycling control capability

- $\geq R_{global} \sim 0.97 1.00$
- \succ LSN-H > LSN-V
- \succ DN-H > USN > DN-V
- > Tiny difference

- \succ Da: Recycling + external injection
- Decrease div. pressure by div. cryopumps to control recycling

Lithium real-time injection

EAST fueling system

Gas puffing (GP), Supersonic Molecular Beam Injection (SMBI), Pellet Injection (PI)

Recycling control methods in EAST

(1) High particle exhaust rate

- > Divertor cryopumps: $75m^3/s \times 2$
- Magnetic configuration optimization
- (2) Low wall reflection rate
 - \succ W (0.9) \rightarrow Lithium (0.1)
 - ➢ Lithium coating & real-time injection
- ing ③ Low wall outgassing rate
 - ➢ GDC & ICWC + Lithium
 - → Gas puffing → SMBI
 - Actively cooling of divertors

- Recycling control methods in EAST
- Influence of plasmas on recycling
- Recycling control for long-pulse discharges
- Summary

Influence of heating power on recycling

Influence of plasma density on recycling

- Recycling control methods in EAST
- Influence of plasmas on recycling
- Recycling control for long-pulse discharges
- Summary

Recycling control in 1056 s plasmas

- ✓ Double Null, 1 MW LHW + 0.4 MW ECH
 ✓ Stable density control during 1056 s discharge
- EAST#106915 2121-12-30 21:55 1 LHW (MW) ECRH (MW) 0.5 0 2.5 ne (10^{19} m^{-3}) 2 1.5 Dα (a.u.) 0.5 olohal 0.95 **400** 0 200 600 800 1000 Times (s)

- ✓ Real-time lithium injection
- ✓ *ne* control via SMBI: $(1.8 \rightarrow 1.4) \times 10^{20}$ D/s
- ✓ Wall saturation: ~700 s, 25% pumping
- ✓ Recycling control: $R_{global} \sim 0.95 0.97$

Particle balance in long pulse discharge

Normalized by Ne/ τ_p

Recycling control mainly by lithium + Div. cryopumps

Recycling with first wall temperature

Summary

Fuel recycling is related to plasma heating power & density Effective recycling control in EAST tokamak

- Intensive discharge cleanings to decrease retention
- High efficiency SMBI to further control retention
- Lithium coating & real-time injection & divertor cryopumps

Successful recycling control in 1056 s discharges

- ➤ Wall changed to outgassing from ~700 s
- Outgassing rate: 13.3%
- Successful recycling control: div. cryopumps 14% + lithium 10.5%
- Slightly increasing fuel recycling with wall temperature/accumulated retention

Thank You

