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OUTLINE: DEVICE WALLS & PLASMA-WALL INTERACTIONS (PWI1) ARE
MORE/MOST RELEVANT AT LONG TIME-SCALES/PULSE-LENGTH
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Implications for/on:

* Global figure(s) of merit, e.g., n.-T-t¢, P/S, Wall FOM

e Thick redeposits (slag) in critical areas of tokamaks due to high fluences
* Present-day, open research topics = pathway to predictive capability for

next-step devices
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OUTLINE: DEVICE WALLS & PLASMA-WALL INTERACTIONS (PWI1) ARE
MORE/MOST RELEVANT AT LONG TIME-SCALES/PULSE-LENGTH
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GLOBAL FUSION FIGURES OF MERIT (FOM) ARE IMPACTED AS PULSE DURATION &

PERFORMANCE INCREASES

* Multi-machine database of n-T-1¢
shows performance degradation

— Attributed to combination of PWI

Reduction of n;-T;-t¢ with pulse duration does not

sroject to future devices
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GLOBAL FUSION FIGURES OF MERIT (FOM) ARE IMPACTED AS PULSE DURATION &
PERFORMANCE INCREASES

° Multi-machine database of n;-T;-T¢ “PMl-scaling” FoM also trends opposite
shows performance degradation that needed for next-step devices
— Attributed to combination of PWI LR e N
issues and/or auxiliary power coupling 1AUG - ===
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during the ITER Era” (The Meade Report)
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GLOBAL FUSION FIGURES OF MERIT (FOM) ARE IMPACTED AS PULSE DURATION &

PERFORMANCE INCREASES

* Multi-machine database of n-T-1¢
shows performance degradation

— Attributed to combination of PWI 10— T

issues and/or auxiliary power coupling C -
o Areal pOWEF denSIty, PAUX/S' 1?w1 53::
also degrades with ty, .tion £ 1 ¢
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compatibility of PFM as SOL - \ -
performance increases**
— Wall FoM is maximal allowed core 100 1o 10000
concentration over sputter yield Incident particle energy (eV)
FOAK RIDGE *Whyte et al. (2012) FED; LaBombard et al. (2015) Nucl. Fusion **Roth et al. (1990) J. Nucl. Mater.




A BIT OF CONTEXT: NET EROSION OR DEPOSITION DRIVES OVERALL PFC
INTEGRITY & DEPENDS ON IMPURITY FLUX BALANCE

* Not only important for PFC performance = impacts whole system performance
Net erosion or deposition
(Erosion minus deposition rates)

Impurity erosion by
sputtering at PFC surface

“Local” PMI

Impurity re-deposition to surface Impurity transport by
(>90% at divertor targets) PFC surface sheath effects

Scrape-off Layer (SOL) transport Impurity release

¢ into SOL
Edge plasma modification by Core plasma modification by u« ”
< > Global” PMI
impurities impurities
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A BIT OF CONTEXT: NET EROSION OR DEPOSITION DRIVES OVERALL PFC
INTEGRITY & DEPENDS ON IMPURITY FLUX BALANCE

* Not only important for PFC performance = impacts whole system performance

Net erosion or deposition
(Erosion minus deposition rates)

Impurity erosion by “ ”
— ~| sputtering at PFC surface [ ——— — Local EM|

Impurity re-dep: sition to surface Impurity t ansport by
(>90% at div [rtor targets) PFC surface « heath effects

Impurit\ release

Scrape-off Layer (SOL) transport T

Into SOL
L 7
Edge plasma modification by | Core plasma modification by u« ”
impurities .y » impurities Global™ PMI

Rough mapping of main path for PWI impurity
contamination through key links in “impurity chain”
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CORE IMPURITIES WILL LIMIT IDEALIZED IGNITION CONDITIONS

* Viable ignition operating space collapses
quickly, e.g. from impurity-free (D-T only)
when including He & W

— Here, ¢\, (ny/n,) ~ low 10~ (~0.001%) range
impacts operation + increases minimum-T,;needed
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Ignition curves showing

impact of W & He
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CORE IMPURITIES WILL LIMIT IDEALIZED IGNITION CONDITIONS

* Viable ignition operating space collapses
quickly, e.g. from impurity-free (D-T only)
when including He & W

— Here, ¢\, (ny/n,) ~ low 10~ (~0.001%) range
impacts operation + increases minimum-T; needed

* Operating space is restricted with any

additional impurity

— Although orders of magnitude more can be
tolerated with Low-Z (~1%) vs Hi-Z (~0.001%)
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OUTLINE: DEVICE WALLS & PLASMA-WALL INTERACTIONS (PWI1) ARE
MORE/MOST RELEVANT AT LONG TIME-SCALES/PULSE-LENGTH
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Implications for/on:

e Thick redeposits (slag) in critical areas of tokamaks due to high fluences

%OAK RIDGE
Nat: ry

ional Laborato:




EROSION & MIGRATION DEPENDS ON FLUXES TO SURFACES THAT VARY
TREMENDOUSLY BY LOCATION

ITER erosion modeling by different incident species on a variety of material surfaces*

Incident flux distribution | Erosion rate distribution
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* Erosion & Migration is:
— Multi-dimensional problem in space & time
— Complicated by wide ranges of magnitudes/energies
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PW!I ‘STATE-OF-THE-ART’ = MATERIAL MIGRATES FROM MAIN CHAMBER INTO
DIVERTOR REGION

* Both high-Z & low-Z material erosion  Jog10(flux [m2s]) deposition
— 16
eventually end up in divertor

* Exact nature of re-deposition
depends on plasma conditions,
divertor geometry, & elemental
species

JNIN (6T02) 'l 39 Aouezéwog

- ( Better diagnosis & model validation still
required = quantitative predictive
\capability y
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VOLUME OF MATERIAL ERODED + SLAG BUILD-UP IN NEXT-STEP DEVICES IS

MASSIVE

Main Wall Net Erosion Rate Estimates*
(based on c-x neutrals only, no ions + 100% wall coverage)

P, |Yearly duty cycle | Wall Load Net Erosion Rate [kg/yr]
T

DIlI-D 3.2x102 0.13 0.08 0.16
EAST 24 0.32 1.6 1.60 0.82 1.80
JT-60SA 34 3.2x102 0.22 0.22 0.15 0.27
ITER 100 3.2 100 29-286 44-54 17-80
ST Pilot 50 ~32 500 330 190 400
ARC 100 ~32 1000 650 370 790
CPP 260 ~32 2600 1.7x103 1.0x103 2.0x103
CFETR 1000 38 12000 7.8x103 4.4x10° 9.5x103
Reactor 400 79 10000 6.5-21x10°  3.7x103 5-7.9x103

FOAK RIDGE *For details on numbers: see Table 1 in Stangeby et al. (2022) Plasma Phys. Control. Fusion




VOLUME OF MATERIAL ERODED + SLAG BUILD-UP IN NEXT-STEP DEVICES IS

MASSIVE

Main Wall Net Erosion Rate Estimates*
(based on c-x neutrals only, no ions + 100% wall coverage)

Yearly duty cycle | Wall Load Net Erosion Rate [kg/yr]

Device

[%] [T/ yr]
DIII-D 20 3.2x1072 0.2 0.13 0.08 0.16
EAST 24 0.32 1.6 1.60 0.82 1.80 Device
JT-60SA 34 3.2x10°2 0.22 0.22 0.15 0.27 Estimates
ITER 100 3.2 100 29-286 44-54 17-80
STPilot 50 ~32 500 330 190 400
ARC 100 ~3) 1000 650 370 790
CPP 260 ~32 2600 1.7x100  1.0x10>  2.0x10°
CFETR 1000 38 12000 7.8x10°  4.4x10°  9.5x103
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VOLUME OF MATERIAL ERODED + SLAG BUILD-UP IN NEXT-STEP DEVICES IS

MASSIVE

Main Wall Net Erosion Rate Estimates*
(based on c-x neutrals only, no ions + 100% wall coverage)

P, |Yearly duty cycle | Wall Load Net Erosion Rate [kg/yr]
T

DIlI-D 3.2x102 0.13 0.08 0.16
EAST 24 0.32 1.6 1.60 0.82 1.80

JT-60SA 34 3.2x102 0.22 0.22 0.27
3+ decade

ITER 100 3.2 100 29-286 17-80 ihcrease
ST Pilot 50 ~32 500 330 400 from

current
ARC 100 ~32 1000 levels!
CPP 260 ~32 2600 1.7x1 .0x103
CFETR 1000 38 12000 7.8x103 9.5x103
Reactor 400 79 10000 6.5-21x10°3 3.7x103 5-7.9x103

FOAK RIDGE *For details on numbers: see Table 1 in Stangeby et al. (2022) Plasma Phys. Control. Fusion




MATERIAL MIGRATION PATH LEADS TO LARGE DEPOSITS ON & NEAR
DIVERTOR TARGETS

] DIlI-D divertor target net erosion rate
* Detached divertor targets enhance

material deposition build-up

changes to net deposition with
detached conditions
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MATERIAL MIGRATION PATH LEADS TO LARGE DEPOSITS ON & NEAR
DIVERTOR TARGETS

* Detached divertor targets enhance
material deposition build-up

* Beginning with FPPs on to Reactors,
volume of material depositing will be
significant at critical target locations

* Large material deposition creates concern
for:

— Tritium co-deposition
— Delamination/UFO - disruptions

Slag deposits
10 — 100 cm thick

*Courtesy of J.W. Davis

— Dust production > explosive hazard
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OUTLINE: DEVICE WALLS & PLASMA-WALL INTERACTIONS (PWI1) ARE
MORE/MOST RELEVANT AT LONG TIME-SCALES/PULSE-LENGTH
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Implications for/on:

* Present-day, open research topics = pathway to predictive capability for

next-step devices
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UNCERTAINTY IN FAR-SOL CONDITIONS COMPLICATES ESTIMATES OF
DEPOSITION AMOUNTS

* Background plasma conditions are a key driver of main wall erosion

ITER ERO2.0 modeling of Be migration WalIDYN deposition prediction

High-density far-SOL ‘ Be deposition rate
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PFC WEAR PREDICTED TO BE HIGHLY NON-UNIFORM &, AGAIN, DEPENDENT
ON POLOIDALLY VARYING INCIDENT FLUXES (1/2)

Steady-state simulation of D & W fluxes to Wall coordinate
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PFC WEAR PREDICTED TO BE HIGHLY NON-UNIFORM &, AGAIN, DEPENDENT
ON VARYING INCIDENT FLUXES (2/2)

W sputtering flux
[10” Ws™]
W o

JET-ILW outer divertor target W sputtering*®

Transients (ELMs) complicate net erosion
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Simulated erosion profiles of
JET-ILW outer divertor target**

—-a\W Erosion intra-ELM

-o-\V Erosion inter-ELM
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Major radius [m]

*Brezinsek et al. (2015) J. Nucl. Mater. **Kirschner et al. (2019) NME
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PFC WEAR PREDICTED TO BE HIGHLY NON-UNIFORM &, AGAIN, DEPENDENT
ON VARYING INCIDENT FLUXES (2/2)

Transients (ELMs) complicate net erosion

Simulated erosion profiles of

- 1 i *
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CURRENT DEVICES SHOW SIGNIFICANT REDEPOSITED LAYERS IN DIVERTOR (1/2)
—> SLAG IS REAL!

JET ITER-like Wall (ILW) has resulted in thick Be deposition layers

\\ O
€3 . . . . P % %
2 ez *  Similar to JET-C redeposits but inner- Tile-6 SEM
: 1 A . .
BN leg shelf more prominent with ILW
CHTY .
17 /W 4 2|01 * Stability of these layers a concern
- @»ﬂ aft : (delamination + dust/UFOs production)
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< 80
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7§ 40
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depth (um)
FOAK RIDGE *Heinola et al. (2017) Nucl. Fusion **Widdowson et al. (2017) Nucl. Fusion




CURRENT DEVICES SHOW SIGNIFICANT REDEPOSITED LAYERS IN DIVERTOR (2/2)
—> SURFACE MORPHOLOGY IMPLICATIONS FOR W PMI

Trapping of He between WO; surface layer &

Formation of large/thick oxygen-rich deposition

regions on WEST inner target PFCs
D nner tile # 34
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CURRENT DEVICES SHOW SIGNIFICANT REDEPOSITED LAYERS IN DIVERTOR (2/2)
—> SURFACE MORPHOLOGY IMPLICATIONS FOR W PMI

-

Such surface morphology issues are key mechanisms in T-retention and dust/UFO
formation

: Sub-surface Cavities
(likely He-filled)

Tsitrone et al. PFMC (2021) &= ', "WW’J X Adherent cappmg'la'yer :
Mayer et al. Phys.Scri. (2021) e .' - covers surfaces - . s
i (likely monoclinic W03) 72 7 ed
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REDEPOSITED LAYERS IN DIVERTOR REGION = TRITIUM RETENTION CONTINUES
TO BE A MAJOR CONCERN & UNCERTAINTY FOR NEXT-STEP DEVICES

e Multiple (highly uncertain) factors contribute to deposition & removal of T

ITER modeling showing variability of T retention Removal of hydrogenic species in relevant slag

layers is highly temperature dependent

based on details of background plasma

Different plasma backgrounds 10"
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SUMMARY: DEVICE WALLS & PLASMA-WALL INTERACTIONS (PWI) ARE
MORE/MOST RELEVANT AT LONG TIME-SCALES/PULSE-LENGTH

Implications for/on:

* Global figure(s) of merit, e.g., n.-T-t, P/S, Wall FOM

— Operating space is restricted with any additional impurity + PFC performance limited

e Thick redeposits (slag) in critical areas of tokamaks due to high fluences

— Beginning with FPPs, deposited material at critical target locations will be significant

* Present-day, open research topics = pathway to predictive capability for
next-step devices

— Better diagnosis & model validation (predictive capability) still required

— Slag creates concern for: T co-deposition; Delamination/UFOs =2 disruptions; Dust
production = explosive hazard

%OAK RIDGE
Nat: ry

ional Laborato:




Backups
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SOME FINAL CONSIDERATIONS: MAJOR ROAD-BLOCK (SHOW-STOPPER!) IS
CONTROLLING WALL HEAT FLUX HANDLING FOR LONG PERIODS

Progress toward fusion pilot plant (FPP) Limit to fusion devices to-date is critical heat
means extending pulse length flux in infinite slab & T;; ~2300K
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* Historically, tokamaks have been limited in area power flux density (P/S) = next step
devices with need sustained high-P/S

* New paradigms for PFC design = give high TRL options
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PFC WEAR PREDICTED TO BE HIGHLY NON-UNIFORM &, AGAIN, DEPENDENT
ON POLOIDALLY VARYING INCIDENT FLUXES

Validation of W net erosion & migration models needed due to large
uncertainties in calculations

Divertor target net erosion
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PFC WEAR PREDICTED TO BE HIGHLY NON-UNIFORM &, AGAIN, DEPENDENT
ON POLOIDALLY VARYING INCIDENT FLUXES

Validation of W net erosion & migration models needed due to large
uncertainties in calculations
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THIS MATERIAL MIGRATION PATH LEADS TO LARGE DEPOSITS AROUND

DIVERTOR TARGETS DIII-D divertor target
material migration summary

e Detached conditions at targets compound = | 00 %% il
material deposition condition 3 7 «f
MR Q, 0
E @ lwall wo;;g o
e 4 - O O
2 o od Fuu) 0@3
- o o B °
65 75 85 95
n, line averaged density (m3)
Inner Outer
' Strikq' point ' ' ' Strikfe point
o T0f E 1T "’I. : — Detached
3 g‘? ] E [ Erosion | ‘.:“ === Attached
S5 2 - .
£ 2 E ENTN LRy R SRR L, e
S¢éE . A~ Private-flux 4’“’.)‘:"
i - ‘ region [ Deposition | E
00 4 0 0 80

Radial Distance from Divertor Strike Points (mm)
%OAK RIDGE

National Laboratory




