DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

EVOLUTION OF THE W CRISTALLINE STRUCTURE UNDER HE IRRADIATION: SURFACIC EVOLUTION AND BUBBLE FORMATION EXPERIMENTAL CHARACTERIZATION

Elodie BERNARD, Loïc CORSO, Stefano CURIOTTO, Frédéric LEROY, Céline MARTIN, Lucio MARTELLI, Cormac CORR, Matt THOMPSON, Sébastien GARCIA-ARGOTE, Mickaël PAYET, Sophie FEUILLASTRE, Gregory PIETERS, Ryuichi SAKAMOTO, Russell DOERNER, Arkadi KRETER, Etienne HODILLE, Nathalie HERLIN-BOIME, Marie-France BARTHE, Mykola IALOVEGA, and Christian GRISOLIA

elodie.bernard@cea.fr

SanDiego

DE LA RECHERCHE À L'INDUSTR

• W: used in JET, WEST, ITER

intensive fluxes of He and H isotopes at high temperatures

• Impact of He irradiation at the surface

- dislocation loops
- bubbles
- W-fuzz

He has a strong impact on the material.

These modifications can affect the trapping of hydrogen (T).

• In tokamaks, multiple plasma-surface interaction complexify the access to fundamental He-W mechanisms

DE LA RECHERCHE À L'INDUSTRI

PRISTINE W: MAJOR INCREASE OF T TRAPPING WITH PRE EXISTING DEFECTS

IMPACT ON W: FROM IN SITU CX-HE EXPOSURE (LHD) TO HIGHER HE FLUX IN LINEAR PLASMAS (PSI-2, PISCES-A)

All exposures: temperature-controlled sample holders

	LHD	PSI-2	PISCES-A
Exposure	CX He (up to 1 keV)	75 eV He⁺	70 eV He⁺ (W fuzz)
Temperature (°C)	500-800	250- 800	850
Flux (m ⁻² .s ⁻¹)	1x10 ²¹ to 1x10 ²²	2.5x10 ²⁰ to 2.5x10 ²²	9.26x10 ²¹
Fluence (m ⁻²)	3x10 ²² to 1x10 ²³	3x10 ²³ to 1x10 ²⁶	1x10 ²⁶
He 50 nm	0 20 Depth [nm] 40 10 10 10 10 10 10 10 10 10 1	473 K 1073 K XNU	2 μm

IN SITU HE-W INTERACTIONS ARE COMPLEX AND THEIR IMPACT HARSHER THAN EXPECTED

All exposures: temperature-controlled sample holders

	LHD	PSI-2	PISCES-A
Exposure	CX He (up to 1 keV)	75 eV He⁺	70 eV He⁺ (W fuzz)
Temperature (°C)	500-800	250- 800	850
Flux (m ⁻² .s ⁻¹)	1x10 ²¹ to 1x10 ²²	2.5x10 ²⁰ to 2.5x10 ²²	9.26x10 ²¹
Fluence (m ⁻²)	3x10 ²² to 1x10 ²³	3x10 ²³ to 1x10 ²⁶	1x10 ²⁶

ACCESSING HE-W MECHANISMS: THE NEED FOR A FUNDAMENTAL DYNAMIC NANOSCIENCE STUDY

- Low Energy Electron Microscopy (LEEM) for surface evolution
- X ray Diffraction (XRD) and Grazing Incident Small Angle X-ray Scattering (GISAXS) for bubble formation and evolution

10

- + Temperature-controlled setups
- + Coupled with post-mortem characterizations: FIB+TEM, AFM, SIMS
- Monocristalline samples: W(100), W(110), W(111)
- Preparation protocol: 0
 - Ideal surface orientation (<0.1° orientation error)
 - Cleaning and surface roughness minimization (Auger electron spectroscopy)
 - > 15 min Oxygen annealing 1200K (P = 3.0x10-7 torr)
 - > 40 s high temperature flash (2200K) under vacuum
 - Au film deposition to prevent native oxide formation

^{473 (2016) 6-12.}

DIRECT OBSERVATION OF SURFACE RECONSTRUCTION UNDER LEEM

• W(100) exposed to 2 keV He⁺ exposure

- Strong surface modification
- Original ideal surface state is recovered during annealing up to 1573 K

Temperature is a key parameter

Surface recovery can undergo transient stages inaccessible with post-mortem studies

KINETIC STUDY OF HE BUBBLE FORMATION AND EVOLUTION IN TUNGSTEN BY IN-SITU GISAXS

Detect

Scattered x-ray

- Grazing-incidence Small Angle X-ray Scattering (GISAXS):
 - non destructive technique using a **photons probe** to study nanostructure materials, combining the length scales of small-angle scattering and surface sensitivity of grazing incidence diffraction.
 - Determines average particle properties on a larger scale
- 20.0 Incoming x-ray Sample
- ESRF campaign 1: E_{He} =2 keV (2.4x10¹⁷ He.m⁻²s⁻¹, 1x10²² He.m⁻²), θ =1273 K

He nano-bubbles formation from very low fluence

Preferential scattering of X-ray shows (100) and (110) facetted He bubbles

W(100) before,

after He implantation,

and after annealing up to 1773 K | PAGE 8

POST MORTEM ANALYSIS: ADDITIONAL CLUES FOR THE GISAXS DATA MODELING

- GISAXS diffraction spectra: integrated contribution (surface+bubbles)
 - IsGISAXS modeling to specify bubble size, distribution and density
- Post-mortem characterization tools:
- Transmission Electron Microscopy (TEM):
 - > Bubbles distributed in the first 50 nm
 - (100) and (110) facets are visible
 - Radius varies from 2 to 10 nm

- Secondary Electron Microscopy (SEM) + Atomic Force Microscopy (AFM):
 - Holes linked with bubble bursting
 - > Squared shape on (100) surface

- > Impact of pre existing W structure: crucial for T inventory
 - Defects, dislocations, vacancies are present in "real life" tokamak W
 - > Importance of manufacturing process and/or sample preparation
- Complexity of PWI He irradiation conditions: competition of the impacts of the creation of defects and He bubbles
 - Fundamental study needed to decouple the various contributions to the morphology changes and understands He-W fundamental interactions
- First dynamic He-W interaction study based on LEEM and GISAXS
 - > **Temperature** is a key parameter
 - Facetted bubbles with (100) and (110) planes are formed during He implantation and coalesce during annealing
 - > Bubble bursting creates **square shaped holes** on the surface
- ESRF campaign 2: E_{He} = 300 eV (Oct 2022)
- Evaluation of He inventory

Link with modeling

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives	DRV
Centre de Cadarache 13108 Saint Paul Lez Durance Cedex	IRFM
T. +33 (0)4 42 25 65 44 F. +33 (0)4 42 25 49 90	SI2P

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019