The coupling effects of divertor configuration and drift on detachment in EAST new lower tungsten divertor for long-pulse operation

by

Hang Si^{1*}

Rui Ding¹, Guoliang Xu¹ and EAST Team¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Presented at the Technical Meeting on Long-Pulse Operation of Fusion Devices Vienna, Austria, IAEA Headquarters

Outline

Introduction

- **Basic setup in the SOLPS-ITER code**
- **The effect of divertor configuration on detachment in EAST**
- Coupling effects of drift and divertor configuration on detachment in EAST
- **Summary**

The main divertor challenges for EAST long-pulse operation

The main divertor challenges for EAST long-pulse operation

ASIPP

The main divertor challenges for EAST long-pulse operation

Both upper and lower divertor with full W plasma-facing components **Control of heat flux and W erosion :** > Divertor heat load ($q \le 10 \text{ MW/m}^2$) > Acceptable divertor target erosion $(T_e \le 5 \sim 10 \text{ eV})$ > Compatible with core plasma

scenario

Heat flux and erosion control

6

Closed DivertorNeutral baffling

Heat flux and erosion control

Heat flux and erosion control

Operation scenario
Unfavorable B_t direction

Modeling setup in SOLPS-ITER

- **SOLPS-ITER** with full drifts
- Plasma species: D and Ne
- $P_{SOL} = 2 MW$
- D=0.3 m²/s, χ =1.0 m²/s
- Ne puff rate = 1.0e18 /s
- Scan of D puffing rate

The effects of outer otrike point(OSP) locations (Fav. B_t)

- Three different OSP locations are compared.
- Te at the OSP can be reduced with increasing the upstream electron density.
- The divertor configuration with the OSP on the horizontal target can achieve detachment more easily.
- The divertor configuration with the OSP on the vertical target has the highest T_e with the same n_{e,sep}.

The effects of outer otrike point(OSP) locations (Fav. B_t)

- Three different OSP locations are compared.
- Te at the OSP can be reduced with increasing the upstream electron density.
- The divertor configuration with the OSP on the horizontal target can achieve detachment more easily.
- The divertor configuration with the OSP on the vertical target has the highest T_e with the same $n_{e,sep}$.

The effects of outer otrike point(OSP) locations (Fav. B_t)

- Three different OSP locations are compared.
- Te at the OSP can be reduced with increasing the upstream electron density.
- The divertor configuration with the OSP on the horizontal target can achieve detachment more easily.
- The divertor configuration with the OSP on the vertical target has the highest T_e with the same $n_{e,sep}$.

The outer target profiles for the three OSP locations with the same n_{e,sep} (Fav. B_t)

The OSP on the horizontal target:

- The lowest electron temperature
- The lowest parallel heat flux density
- The highest neutral density

2D distributions for the three divertor configurations with the same $n_{e,sep}$ (Fav. B_t)

• The divertor configuration with the OSP on the horizontal target can trap the most effectively the neutrals in the outer divertor region with the lowest T_e.

2D distributions for the three divertor configurations with the same $n_{e,sep}$ (Fav. B_t)

- When the OSP is switched from the vertical to horizontal target, the ionization region is reduced and a small recombination area is formed in front of the target.
- Different recycling behaviour of neutrals causes more neutrals trapped with the horizontal target configuration which can reduce Te.

ASIPP

The effects of outer otrike point(OSP) locations (Fav. B_t and Unfav. B_t)

- Te at the OSP with unfavorable B_t is lower than that with favorable B_t under the same upstream electron density.
- The divertor configuration with the OSP on the horizontal target with unfavorable
 B_t can achieve detachment more easily.

The effects of outer otrike point(OSP) locations (Fav. B_t and Unfav. B_t)

- Te at the OSP with unfavorable B_t is lower than that with favorable B_t under the same upstream electron density.
- The divertor configuration with the OSP on the horizontal target with unfavorable B_t can achieve detachment more easily.

The outer target profiles of horizontal divertor configuration (Fav. B_t and Unfav. B_t)

Thehorizontaldivertorconfiguration withunfavorableBthasa lowerTeAndheatfluxdensityattheoutertargetthanthatfavorableBt

2D distributions for the horizontal divertor configuration (Fav. B_t and Unfav. B_t)

 The horizontal divertor configuration with unfavorable B_t has higher n_e and lower T_e in the outer divertor region than favorable B_t.

Different E x B drift direction redistributes the ions between the inner and outer targets

• E x B drift with unfavorable B_t causes ion flows from the inner divertor area to the outer divertor area crossing the private flux region.

Summary

- The outer strike point on the horizontal target near the corner can trap more neutrals and then reduce the corresponding electron temperature and heat flux density.
- The E x B drift with unfavorable B_t can cause ion flows from the inner divertor to the outer divertor, which can reduce further the electron density and heat flux density at outer target.
- ✓ More modeling will be performed for the existing experiments for further comparison.

Thank You!

