

Direct measurement of dynamic retention from plasma exposed tungsten & stainless-steel type 316L specimen using Fast Ejecting System of Targeted Sample (FESTA) on QUEST

<u>Qilin YUE¹, Kazuaki HANADA², Makoto OYA³, Shinichiro KOJIMA⁴, Hiroshi IDEI², Takumi ONCHI², Kengoh KURODA², Naoaki YOSHIDA², Ryuya IKEZOE², Takashi IDO², Makoto HASEGAWA², Shun SHIMABUKURO², Aki HIGASHIJIMA², Takahiro NAGATA², Shoji KAWASAKI², Kaori KONO²</u>

1. IGSES, Kyushu Univ., Japan, 2. RIAM, Kyushu Univ., Japan, 3. FES, Kyushu Univ. Japan, 4. QST, Japan

Motivation

- Steady State Operation (SSO) of plasma is necessary to realize nuclear fusion power generation in the future.
- Adoption of metallic materials (W, Be, etc.) in PFWs is promoted to reduce wall-stored particles but induce an excessive desorption (recycling ratio R >1) of fuel particles.
- Impact on SSO: density runaway, plasma temperature decrease, plasma dilution, even plasma termination.

Surface conditions of PFWs largely influence particle recycling and FESTA was developed to evaluate them during plasma discharges

- Surface conditions on PFWs closely related to surface barrier E_c , especially metal materials such as W are proved to be significant on dynamic retention from PFWs due to surface recombination effect.
- A small change of E_C causes huge changes on the surface recombination of PFWs, the measurement of dynamic retention and the evaluation of $E_{\rm C}$ Zhao Takagi Furuta during plasma discharges becomes important. Pick & Sonnenberg
- **F**ast **E**jecting **S**ystem of **T**argeted sAmple (FESTA) was developed.

Impurity

-SHU UNIVERSITY EXPERIMENT WIT

surface recombination coefficient
$$K_r$$

Metal solubility $K_s = K_{s0} \exp(-\frac{Q_s}{kT})$
sticking coefficient $s = s_0 \exp(-\frac{2E_c}{kT})$
 $\Rightarrow K_r = \frac{s_0\mu}{K_0^2} \exp(-\frac{2E_c-2Q_s}{kT})$

O.V. Ogorodnikova 2019 J. Nucl. Mater. J. Roth and K. Schmid 2011 Phys. Scr. M.A. Pick and K. Sonnenberg 1985 J. Nucl. Mater.

FESTA [Q. Yue et al. 2020 Plasma Fusion Res. 15 240201] was developed to measure the particle recycling and to be able to decide E_C during the plasma discharge.

- (a) The structure of FESTA
- (b) the profile of the test chamber from the plasma side. Two thermocouples on each side of the specimen stage, four in total.

Time scale of operating FESTA

FESTA operations	Required time (s)
End of specimen	0
exposure	
Closing gate valve 2	8
Closing gate valve 1	2.8
Measurement	Continuation

Background model was constructed [Q. Yue et al. 2020 PFR. 15 240201] to eliminate the influence from plasma-induced background

1.5

2

2.5

 2.5×10^{16}

0.5

Ω

from experiments $(m^{-2}s^{-1})$ 5.0 t c.1 c.1 \sim

oackground flux

Measurement will be influenced by

- from background model (m⁻²s⁻¹) ns come int • High energy charge-exchange hydrogen atoms come into the test chamber and are adsorbed • stored by the test chamber wall, which is called plasma induced background.
- Low-speed neutral particles move back and forth due to the connection of QUEST vacuum chamber and FESTA test chamber.
- Outgas from the vacuum vessel wall is being released.

Without plasma-exposed specimen, the hydrogen pressure predicted from background model has an agreement with the experiment data.

With the help of FESTA, a W specimen was exposed to QUEST hydrogen plasma for 3 times shot by shot in 2022S/S campaign.

0.6

0.2

-0.2

-0.6

-1.0

0

plasma-exposed specimen

- Material: tungsten (99.99%)
- Size: Φ 60 mm
 - d 0.5 mm
- Surface Treatment: ultrasonic cleaning

Using two-layer model to verify the experimental data and to decide the surface barrier $E_{\rm C}$.

Comparison between model calculation and experimental data

Γ [m-2a-1]	2.5×1017	logx logy contrast
I_{in} [III - S -]	2.3 × 10	#48773 2nd exposure #48774 3rd exposure
Exposure time [s]	910	$\begin{array}{c}T = T_w = 473 \text{ K} \\T = T_w = 473 \text{ K} \\\#48772 \text{ 1st exposure} \\ \#48773 \text{ 2nd exposure} \\ \#48774 \text{ 3rd exposure} \\ \#48774 \text{ 3rd exposure} \end{array}$
$D_0 [m^2 s^{-1}] [1^*]$	1.5×10^{-10}	B ⁻² 8
E _D [eV] [2*]	0.25	
$k_{r0} [m^4 s^{-1}] [3^*]$	3×10^{-25}	
$E_{k} [eV]$	0.33	d dro
$E_{C}[eV]$	1.195	
de-trap activation energy [eV] [4*]	0.85	¹ TIME (s)
C _{T0} [m ⁻³] [5*]	7×10^{26}	

[1-2] P. Franzen 1997 J. Nucl. Mater.
[3] O.V. Ogorodnikova & Franzen
[4-5] P. Franzen 1997 J. Nucl. Mater.
C.Garcia-Rosales 1996 J. Nucl. Mater.

• Within the increase of wall temperature, the released hydrogen flux is predicted to be faster, indicating that Tw is also a key to control fuel recycling and SSO.

- Hydrogen atoms were trapped into W specimen due to the exposure to hydrogen plasma.
- The dynamic retention from the plasma-exposed specimen became a bit higher, due to the trapped • dissolved hydrogen.
- The surface barrier E_C has been evaluated using two-layer model at room temperature during plasma discharges.
- The adoption of metal walls can reduce the wall-stored particles, but within successive long-duration plasma discharges, the dynamic retention seems to be increased.

Comparison between W and SS type 316L

$\Gamma_{\rm in} \left[{\rm m}^{-2} {\rm s}^{-1} \right]$	1.3×10^{17}
Exposure time [s]	910
$D_0 [m^2 s^{-1}] [1^*]$	1.5×10^{-10}
$E_{\rm D} [{\rm eV}] [2^*]$	0.25
$k_{r0} [m^4 s^{-1}] [3^*]$	3×10^{-28}
$E_{k}[eV]$	0.55
E _C [eV]	1.305
de-trap activation	0.7
energy [eV]	
$C_{T0} [m^{-3}]$	6×10^{26}

plasma-exposed specimen

- Material: SS type 316L
- Size: Φ 60 mm d 1 mm
- Surface Treatment: ultrasonic cleaning

[1-2] Y. Sakamoto et al. 1982 J. Japan Inst. Metals.
[3] QUEST I T T T

-SHU UNIVERSITY EXPERIMENT WITH

- Using the same two-layer model, the surface barrier E_C of stainless-steel type 316L was also evaluated during long-duration plasma discharge.
- The hydrogen flux from SS type 316L was more slow and smaller than that from tungsten but increased more obviously shot by shot.

Advanced Fusion Research Center

Summary

- ➤A device named FESTA (Fast Ejecting System of Targeted sAmple) has been developed to measure the dynamic retention of hydrogen during plasma discharge in QUEST and its pre-programmed motion was proved successfully.
- A prepared specimen (pure W and SS type 316L) was exposed to QUEST hydrogen plasma using FESTA 3 times with a fixed interval of 70 minutes at room temperature.
- ➤The increase dynamic retention from the plasma-exposed specimen shot by shot was directly measured.
- ➢ To understand physical processes, a hydrogen diffusion-desorption model called twolayer model including trap-de-trap effect was constructed.
- ▷ By the model calculation, the important surface barrier E_C and surface recombination coefficient can be evaluated during plasma discharge.
- ➢It is indicated that the surface conditions of PFWs are significant, a successive and long-duration plasmas discharge will lead to an increase on dynamic retention from PFWs, which influence SSO to a large extent.

