The core MHD events in thousand-second discharge on EAST Tokamak

by

Liqing Xu^{1*}

Xianzu Gong¹, Erzhong Li¹, Shiyao Lin¹, Yuqi Chu¹, Tianfu Zhou¹, Qing Zang¹, Bin Zhang¹, Shouxin Wang¹, Jinping Qian¹, Yan Chao¹, Yanmin Duan¹, Haiqing Liu¹, Liqun Hu¹, Yao Huang¹, Adi Liu², Xi Feng² and Yuntong Song¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 China ²University of Science and Technology of China, Hefei, 230026, China

Presented at the Technical Meeting on Long-Pulse Operation of Fusion Devices Vienna, Austria, IAEA Headquarters

November 15 2022

*E-mail: <u>lqxu@ipp.ac.cn</u>

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

The core MHD is double-edged sword in LPO

Negative:

3

- TM/NTM: nonlinear three-wave **coupling** or forced magnetic reconnection
- Multi-ideal: Limit the plasma • performance: change of magnetic topology

Te flatten due to high n ideal MHD • S. Jardin PRL 128, 245001 (2022)

(a) Bicoherence of magnetic probes (DIII-D #169537, Δt=4685-4755ms)

 Seed island due to three-wave coupling L. Bardóczi PRL 127, 055002 (2021)

The core MHD is double-edged sword in LPO

Positive (Steady MHD):

- Impurity accumulation avoidance
- Maintenance of flat q: magnetic flux pumping
- Lower turbulence transport: multiscale interaction

 Turbulence reduced due to internal kink
 E. Li PRL 128, 085003 (2022)

Active control of core MHD is needed in LPO!

Outline

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

✓ Features of core MHD : structure and dynamic

- \checkmark Nonlinear interaction: MHD and turbulence
- ✓ Active control with novel technology : Vloop feedback with LH

Saturated m/n=1/1 mode observed in EAST long pulse operation

> 1000s operation

- Pure RF heating with $\beta_p = 1.5$
- Electron heating dominant

 $T_{e0} \sim 6 keV$ and $T_{i0} < 1.0 keV$

Core MHD

- m/n=1/1 mode dominant from t=23s to t >1000s, accompanying with 1/1 to 3/2 transition.
- $f_{3/2} \sim 2kHz < f_{1/1} \sim 7kHz$

Repetitive burst of saturated m/n=1/1, no sawtooth crash!

Observation of m/n=3/2 triggered by m/n=1/1

- m/n=3/2 mode triggered by m/n=1/1 mode
 - Multi-MHD mode coupling and
 - competitive

- Heat/particle outward with m/n=1/1
 - ∇n_e is dominant with m/n=3/2 tearing

Features of core MHD: dynamics and spatial structure

eTe/1e €

-0.04

-0.06

250

200

150

lime (a.u.)

□ m/n=1/1

- twisted structure, no clear island formation
- $f_0 \propto T_{e,q=1}$; $f_t \propto \omega_e^*$

□ m/n=3/2

10

20

SXR No.

0.2

Clear island identified by ECE

(b)

0.2

0.4

30

40

20

SXR No.

0.6

0.01

-0.0

-0.02

-0.03

9.23

9.2295

9.229

9.2285

9.228

10

Time (s)

w_{3/2}(m)

Calculate

From ECE

0.6

0.4

30

40

with a size of ~2cm

A negative equilibrium current generated with saturated MHD

Negative current generation

- Axis-symmetry

 equilibrium current
 generated by 3D
 asymmetry perturbation
 helical modes
- Intrinsic current

\Box Increase of q_0

- Eliminate of q=1 and sawtooth free
- Helping formation of weak magnetic shear in the core, and improve performance

Outline

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

✓ Features of core MHDs: structure and dynamic

- \checkmark Nonlinear interaction: MHD and turbulence
- ✓ Active control with novel technology : Vloop feedback with LH

Nonlinear interaction: MHD (kink and tearing) and turbulence

m/n=1/1 internal kink & turbulence

 Intrinsic current generated by turbulence could be a medium to multiscale interaction

m/n=3/2 island & turbulence

- Turbulence modulated by m/n=3/2 island
- Magnetic reconnection at X point of island play a key role

Outline

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

✓ Features of core MHD : structure and dynamic

- \checkmark Nonlinear interaction: MHD and turbulence
- ✓ Active control with novel technology: Vloop feedback with LH

Vloop feedback control with LH waves is used for MHD control

MHD control

- RF waves(ECCD , ICRF or LH): modification of local current density
- Magnetic configuration
- NBI or ICRF: generation of fast ions or plasma rotation
- RMP: non-axis-symmetry 3D magnetic
 perturbation via non-resonant effect
- Novel Vloop feedback method
 - 4.6GHz LH waves is applied

A robust technology for core MHD control is required for ITER, where magnetic island will form via three wave coupling.

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

Nonlinear 3D code M3D is used to simulate m/n=1/1 steady mode

M3D nonlinear simulation

- Extend-MHD code in 3D torus, including dissipation, diffusion, viscosity and Hall effect. Separate ne from pressure, and including drift effect.
- Use EAST realistic magnetic
 configuration and equilibrium(Te, Ne,
 q and current density)

The 2-D equilibrium current modification by 3-D 1/1 mode

- **Equilibrium current redistribution**
 - A large $J_{\phi 0}$ near q=1.5 is generated
 - Negative current generation in the axis

- **Equilibrium current redistribution**
 - q(0) > 1 due to negative

current generation in the axis

16

Modified equilibrium current lead to m/n=3/2 island formation

×10⁻⁵

(f)

2.2

ASIPP

17

Change of equilibrium current at q=1.5 is due to local

Eq. +Pert. (3D)

• Δn_e is much larger than ΔT_e at q=1.5

Eq. Only (2D)

18

• ΔT_e is much larger than Δn_e at axis

- Heat/particle outward of q=1
 - Δn_e is dominant at q=1.5 after a

transition of m/n=1/1 to m/n=3/2

Comparison of ΔT_e during m/n=1/1 dynamics (Exp. Vs Sim.)

Heat outward due to m/n=1/1

Good agreement between M3D simulated Te perturbation and ECE

measurement

19

Prediction of 2D twisted structure with Hall effect

□ The twisted mode structure is found when Hall effect is included.

01 Motivation of core MHD study in EAST LPO

02 Experimental observations and analysis

Summary and future plans

Summary:

- Saturated MHD modes is observed in EAST 1000s discharge. The dynamics and spatial structure have been studied.
- The presence of m/n=1/1 mode can reduce the turbulence level via multiscale interaction, which contribute to the steady state operation.
- A novel Vloop feedback control method is successfully applied to MHD control.
- Nonlinear MHD simulation indicates the twisted structure of m/n=1/1 mode is due to non-ideal effects (Hall effect).
- Nonlinear MHD simulation reproduce MHD mode transition and an equilibrium current generation at q=1.5 caused to ∇n_e is responsible for the transition.

Plans:

- The mechanism of Te ITB formation due to MHD effect.
- The mechanism of plasma dynamo: Hall dynamo or turbulence dynamo.
- Prediction of MHD modes (AI).
- The role of LH induced fast electron in m/n=1/1 saturation.

Thanks for your attention !

