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The core MHD is double-edged sword in LPO
q Negative: 

• TM/NTM:  nonlinear three-wave 
coupling or forced magnetic 
reconnection 

• Multi-ideal: Limit the plasma 
performance:  change of magnetic 
topology 

• Seed island due to three-wave coupling
L. Bardóczi PRL 127, 055002 (2021)• Te flatten due to high n ideal MHD

S. Jardin PRL 128, 245001 (2022)
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The core MHD is double-edged sword in LPO

Active control of core MHD is needed in LPO!

q Positive (Steady MHD): 
• Impurity accumulation avoidance
• Maintenance of flat q:  magnetic 

flux pumping 
• Lower turbulence transport: 

multiscale interaction 

• Turbulence reduced due 
to internal kink

E. Li PRL 128, 085003 (2022)

• High-Z impurity expel from core due to MHD
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Saturated m/n=1/1 mode observed in EAST long pulse 
operation

q Core MHD
• m/n=1/1 mode dominant from 

t=23s to t >1000s,  accompanying 

with 1/1 to 3/2 transition.

• f3/2 ~2kHz < f1/1 ~7kHz 

Repetitive burst of saturated m/n=1/1, no sawtooth crash!

q > 1000s operation
• Pure RF heating with 𝛽! = 1.5

• Electron heating dominant 

𝑇"#~6𝑘𝑒𝑉 and 𝑇$# < 1.0𝑘𝑒𝑉
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Observation of m/n=3/2 triggered by m/n=1/1

q m/n=3/2 mode triggered by m/n=1/1 
mode 
• Multi-MHD mode coupling and 

competitive q Heat/particle outward with m/n=1/1
• 𝛻𝑛" is dominant with m/n=3/2 tearing
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Features of core MHD: dynamics and spatial structure

q m/n=1/1
• twisted structure, no clear island formation

• 𝑓# ∝ 𝑇",&'( ; 𝑓) ∝ 𝜔"∗

q m/n=3/2 
• Clear island identified by ECE 

with a size of ~2cm 
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A negative equilibrium current generated with 
saturated MHD 

q Negative current generation
• Axis-symmetry 

equilibrium current 
generated by 3D 
asymmetry perturbation 
helical modes

• Intrinsic current

q Increase of 𝒒𝟎
• Eliminate of q=1 and 

sawtooth free
• Helping formation of 

weak magnetic shear in 
the core, and improve 
performance 
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Nonlinear interaction: MHD (kink and tearing ) and 
turbulence

q m/n=1/1 internal kink & turbulence
• Intrinsic current generated by 

turbulence  could be a medium to 

multiscale interaction 
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q m/n=3/2 island & turbulence
• Turbulence modulated by m/n=3/2 island

• Magnetic reconnection at X point of 

island play a key role
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Vloop feedback control with LH waves is used for MHD 
control

q MHD control
• RF waves(ECCD , ICRF or LH): modification 

of local current density

• Magnetic configuration 

• NBI or ICRF: generation of fast ions or 

plasma rotation 

• RMP: non-axis-symmetry 3D magnetic 

perturbation via non-resonant effect

A robust technology for core MHD control is required for ITER, where magnetic 
island will form via three wave coupling.

q Novel Vloop feedback method
• 4.6GHz LH waves is applied 
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Nonlinear 3D code M3D is used to simulate m/n=1/1 
steady mode 

q M3D nonlinear simulation
• Extend-MHD code in 3D torus, 

including dissipation, diffusion , 

viscosity and Hall effect . Separate ne 

from pressure, and including drift 

effect. 

• Use EAST realistic magnetic 

configuration and equilibrium(Te, Ne, 

q and current density)
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The 2-D equilibrium current modification by 3-D 1/1 
mode 

q Equilibrium current redistribution
• A large 𝐽∅# near q=1.5 is generated

• Negative current generation in the axis 
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q Equilibrium current redistribution
• q(0) > 1 due to negative 

current generation in the axis
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Modified equilibrium current lead to m/n=3/2 island 
formation

q Poincare plots:  m/n=3/2 island 
formation at the final state
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Change of  equilibrium current at q=1.5 is due to local 
𝛻𝑛!

q Heat/particle outward of q=1 
• ∆𝒏𝒆 is dominant at q=1.5 after a 

transition of m/n=1/1 to m/n=3/2
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q Eq. +Pert. (3D) 
• ∆𝑛" is much larger than ∆𝑇" at q=1.5

q Eq.  Only (2D) 
• ∆𝑇" is much larger than ∆𝑛" at axis

𝒏𝒆,𝒕𝒐𝒕𝒂𝒍 𝑻𝒆,𝒕𝒐𝒕𝒂𝒍

𝒏𝒆,𝑬𝒒

𝑻𝒆,𝑬𝒒
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Comparison of ∆𝑻𝒆 during m/n=1/1 dynamics (Exp. Vs
Sim.)

q Heat outward due to m/n=1/1
• Good agreement between M3D simulated Te perturbation and ECE 

measurement
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Prediction of 2D twisted structure with Hall effect 

Exp. Hall-MHD

q The twisted mode structure is found when Hall effect is included.
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Summary and future plans
q Summary:

• Saturated MHD modes is observed in EAST 1000s discharge.  The dynamics and 
spatial structure have been studied. 

• The presence of m/n=1/1 mode can reduce the turbulence level via 
multiscale interaction, which contribute to the steady state operation.

• A novel Vloop feedback control method is successfully applied to MHD control. 
• Nonlinear MHD simulation indicates the twisted structure of m/n=1/1 mode is 

due to non-ideal effects (Hall effect).  
• Nonlinear MHD simulation reproduce MHD mode transition and an equilibrium 

current generation at q=1.5 caused to 𝛻𝑛" is responsible for the transition.

q Plans:
• The mechanism of Te ITB formation due to MHD effect.
• The mechanism of plasma dynamo:  Hall dynamo or turbulence dynamo.
• Prediction of MHD modes (AI).
• The role of LH induced fast electron in m/n=1/1 saturation.
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Thanks for your attention！


