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Advanced Tokamak Principles Enable Efficient

Compact Fusion Power Plant Concepts
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Advanced Tokamak Principles Enable Efficient

Compact Fusion Power Plant Concepts
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Principles of the steady state approach
—Shaping, broad profiles & high B 2 high bootstrap
—Benefits to stability, fransport, pedestal and fast ions

* Pilot power plant projection
— Analyfics, methodology, projections

- Benefits and Research needs
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Advanced Tokamak Benefits from Synergy of

Shaping and Broad Profiles at High By
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» Shaping raises ideal MHD limits
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Advanced Tokamak Benefits from Synergy of

Shaping and Broad Profiles at High By
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Advanced Tokamak Benefits from Synergy of

Shaping and Broad Profiles at High By

» Shaping raises ideal MHD limits
— Increases current carrying capacity
— Extends eigen-structure into wall

- Broader pressure profiles place gradients
in strong magnetic shear region

» Broader current displaces mode further into the wall

* Higher B increases Shafranov shift (axis moves outward)
— Moves mode further to wall & raises shear

RJ Buttery/IAEA-LP/2022 8
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Advanced Tokamak Benefits from Synergy of

Shaping and Broad Profiles at High By

» Shaping raises ideal MHD limits
— Increases current carrying capacity
— Extends eigen-structure into wall

- Broader pressure profiles place gradients
in strong magnetic shear region

» Broader current displaces mode further into the wall

* Higher B increases Shafranov shift (axis moves outward)
— Moves mode further to wall & raises shear

Effects combine to raise pressure in core by factor 5
—Self-consistently generate bootstrap currents
aligned with required profiles for stability
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Broad Profiles Also Improve Energy Confinement

« Particle drifts interact with low frequency electromagnetic good
waves causing instabilities and turbulence curvature

bad

curvature

- With peaked profiles, field lines align on bad Peaked
curvature side 2> eddies grow radially profile

BN

eddy
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Broad Profiles Also Improve Energy Confinement

* Particle drifts interact with low frequency electromagnetic good
waves causing instabilities and turbulence curvature bad
curvature
« With peaked profiles, field lines align on bad Peaked
curvature side > eddies grow radially profile

» Broad current profile drives negative local shear
— Even though average shearis weak

Asymmetry in
field pitch
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Broad Profiles Also Improve Energy Confinement

* Particle drifts interact with low frequency electromagnetic
waves causing instabilities and turbulence

» With peaked profiles, field lines align on bad
curvature side > eddies grow radially

» Broad current profile drives negative local shear
— Even though average shear is weak
—Eddies twist into good curvature region

Broad current
profile

eddy
twists
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Broad Profiles Also Improve Energy Confinement

* Particle drifts interact with low frequency electromagnetic
waves causing instabilities and turbulence

Predicted "l'ransport ' DIII-D
35 | Electron heated regime 9=2. GYRO ]

» With peaked profiles, field lines align on bad

Transport low
curvature side 2> eddies grow radially

with peaked
' or off-axis
current ]

» Broad current profile drives negative local shear

[Kinsey PoP 2006]

Conductivity / Diffusivity

— Even though average shear is weak L Particles
— Eddies twist into good curvature region / 5 :
0 .
—Leads to turbulence stabilization 2 0 *

On axi§ ¢=—————on—— Off axis

Current Deposition
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Broad Profiles Also Improve Energy Confinement

* Particle drifts interact with low frequency electromagnetic
waves causing instabilities and turbulence

Predicted "l'ransport ' DIII-D
35 | Electron heated regime 9=2. GYRO ]
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Pedestal Model Projects Strong Shaping Raises Performance

» Peeling-ballooning modes well

| tl h
coupled at low shape Peeling

coupled fo

Ballooning

Pedestal Pressure (kra)
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Pedestal Model Projects Strong Shaping Raises Performance

» Peeling-ballooning modes well

| tl h
coupled at low shape Peeling

coupled fo
Ballooning

» High shaping see drives separate
in parameter space

— Opens valley in pedestal stability
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Pedestal Model Projects Strong Shaping Raises Performance

30

2 Peeling /

Ballooning

» Peeling-ballooning modes well
coupled at low shape

» High shaping see drives separate
in parameter space

— Opens valley in pedestal stability
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Pedestal Model Projects Strong Shaping Raises Performance

30

» Peeling-ballooning modes well

coupled at low shape . Sweet
Peeling spot
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in parameter space
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Pedestal Model Projects Strong Shaping Raises Performance

» Peeling-ballooning modes well
coupled at low shape

Sweet .
spot? 3‘:’

Peeling f@' v
X
W

» High shaping see drives separate
in parameter space

— Opens valley in pedestal stability
— Sweet spots at higher pressure & density
* More elongation moves nose right

A,
/L/Ode

H-Mode

Pedestal Pressure (kra)

Pedestal Density (10°m?)
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Pedestal Model Projects Strong Shaping Raises Performance

» Peeling-ballooning modes well g
coupled at low shape o .
up W P g Peeling >
 High shaping see drives separate & s
in parameter space £ // LA
— Opens valley in pedestal stability s - N ) ‘w% s
— Sweet spots at higher pressure & density § 2 0\\
« More elongation moves nose right K 8=0.5
. 0 2 4 6 8
» Super H-Mode discovered on DIII-D Pedestal Density (10%m?)

— Record Bn=3.1 with a quiescent edge

High shaping raises performance and density !
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Broad Current Profile Ensures Fusion Products Stay Confined

« Potential for Alfvénic resonances in " Fluctuations Simulation
. . T. SR

weak magnetic shear regions ()
— Overlapping modes lead to transport
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Energetic particles 5
drive Alfvénic resonances
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Broad Current Profile Ensures Fusion Products Stay Confined

+ Potential for Alfvénic resonances in " Fluctuations Simulation
. . T. ‘
weak magnetic shear regions » )
— Overlapping modes lead to transport 5
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Broad Current Profile Ensures Fusion Products Stay Confined

+ Potential for Alfvénic resonances in " Fluctuations Simulation
. . T. S
weak magnetic shear regions » ()
— Overlapping modes lead to transport 5
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Benefits of Broadened Profiles Validated in AT Scenarios

* Most fast-ion transport eliminated
DIlI-D with on & =60% off-axis beams

* 15% higher gy accessed . : 133103 180636
Dr [m?/s]
a4l
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, Sy
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Principles of the steady state approach
—Shaping, broad profiles & high B 2 high bootstrap
—Benefits to stability, fransport, pedestal and fast ions

* Pilot power plant projection
— Analyfics, methodology, projections

- Benefits and Research needs
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Based on Steady State Concepts Reactor Analytics
Show a More Efficient & Robust Path is Possible

» Recall fusion power: 5
Pp,s < Pressure’ R® « By°“B*R3/q?

—Raising By & B willreduce required device size, R, and still leave net electric
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Based on Steady State Concepts Reactor Analytics
Show a More Efficient & Robust Path is Possible

» Recall fusion power: 5
Pp,s < Pressure’ R® « By°“B*R3/q?

—Raising By & B willreduce required device size, R, and still leave net electric

Radlus(m)
+ Start from EU ‘stepladder’ DEMO ¢
— Adjust R to get Py = 200MW for given By & B

Less electric: 5.6T ZOOMWe
Pret = Nen(Prus + Pheat) — Pplant — Pcp/MNep

. ) o . gher B
— Rapid decrease in device size possible...
lower Pelec, higher B

RJ Buttery/IAEA-LP/2022 27



Based on Steady State Concepts Reactor Analytics
Show a More Efficient & Robust Path is Possible

» Recall fusion power: 5
Pp,s < Pressure’ R® « By°“B*R3/q?

—Raising By & B willreduce required device size, R, and still leave net electric

Radius (m)
« Start from EU ‘stepladder’ DEMO ° : ! ° ¢
_ Adiust R 10 Got P,.. = 200MW for given By & B
Puet = Nen(Prus + Pheat) — Pplant — Pcp/Mep
— Rapid decrease in device size possible... s
lower Peiec, higher B, higher By & less CD 7T Pu=4 higher Bx
7T Bn=4.5 & less CD

7T Bu=4.5 half CD
8T Bn=4.5 half CD

< 1/10" volume of 9m EU-DEMO!

Can we project such a device
with reactor simulation?
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FASTRAN Integrated Simulation Suite Provides Tool To

Validate Physics Models & Project Performance

Equilibrium/Loop Voltage
EFIT

60

Experiment, analysis
time period=t=4-6 s

20| FASTRAN prediction of
loop voltage at
t=infinity (=32 mV)

Loop Voltage (mV)

Ideal MHD Stability
DCON

00 02 04 06 08 1.0
P

[Park Comp Phys Com 2017]



FASTRAN Integrated Simulation Suite Provides Tool To

Validate Physics Models & Project Performance

Edge Pedestal

EPED1 Model Compared to DIII-D ITER Steady-State
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FASTRAN Integrated Simulation Suite Provides Tool To

Validate Physics Models & Project Performance

Turbulent Transport Edge Pedestal
TGLF
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FASTRAN Integrated Simulation Suite Provides Tool To

Validate Physics Models & Project Performance

Turbulent Ti rt Edge Pedestal
ioulent Transpo /" Core profiles Pedestal EPED

Te(keV) ‘

E P E D EPED1 Model Compared to DIII-D ITER Steady-State
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Turbulent Model Equilibria © DIILD ITER Steady-State

Transport 1] -~
Pedestal
Top TOQ+KBM

Peeling-Ballooning P ]
MHD stability y
ELITE 0 " . . ]
EPED1 Predicted Pedestal Height (kPa)

V IpsFASTRAN ¢

o =N W HOOO N

Top _’i TGLF

Measured Pedestal Height (Protped, kPa)
s
\

0.0 02 04 06 08 1.0
o

Off-axis Current Drive
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Used Integrated Physics Model to Design Device that

Proves Net Electric Viability and Conducts Long Pulse Nuclear Testing

* Goal: Prove key principles at low capital cost
— Net electricity — Nuclear materials - Breeding

* Constraints:

Target Parameters Rationale

Net electric (200MW) Show fusion reactors can power themselves
Compact scale: 3-6m, 5-9T Affordable

High booftstrap fraction (20%) Reduce recirculating power & scale
Tolerable/significant neutronload  Nuclear testing mission: materials, breeding
Tolerable divertor challenge Viable target for diverfor research

Set tractable challenges where we expect progress in the next few years

First predictive approach to reactor design!
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Pilot Plant Concept Drives Needs to

Minimize Power Losses At Every Stage

6T, GA Systems Code

Blanket

Tosuw  heating RS
* Small device must minimize & x1.25
losses at every step Paeia p
. .. 176 MW RECLAIMED
— Otherwise no electricity left 7 1p=0.6 150Mw
— Or they might melt! Phear
1032MW
PFUS\MON
+ Minimize recirculating power sszmw Thermal
ycle
— Steady State approach D=0
— Efficient technology
P,
882MW pi
Fusion Prer
7ZAI\[,|J>\(,V ncp=0.4 200MW
Pgop

29MW
RJ Buttery



Initial Results Highlighted Importance of an Efficient System

1.1

* ‘Conservative’ present technology current drive 2 ot .
& thermal efficiencies: EREE ./'/ 1
—5m, 5.3T, 12MA g~5, n1n=0.33, ncp=0.25 (conservative) 2 g 0.8 |- ) .
§ ¥ o7 § g
z 06 g 2 1

* Raising By to drive fully non-inductive led 0.5 —g
to reduced net electric power _ :gg 8 ]
— Auxiliary power needed to heat plasma ‘5 300 - i 1
E < 250t .
2 % 200 1
W= 150 1
Higher g alone is not enough - energy 2 Ioog 1
confinement & device efficiency are key %0 Poe (MW) a7

0 40 60 80 100 120 140

Auxiliary heating & CD
power (Mw)
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Higher Field is Highly Levering to Confinement

7Tvs 6T, Ip=9.5MA, n Pd/n_ =0.9
Stored Energy (MJ)

300
* Higher field improves core confinement =——» »s0 Total
— From gyrokinetic treatment 5‘//
of core turbulence 2007 &/
150 4

100 4 Pedestal

504

G T T

25 50 75 100

. . " Pcp (MW)
Benefits not captured by simple scaling law H/cD

approach - comes from physics treatment

RJ Buttery/IAEA-LP/2022 36 [Buttery NF 2021]



Increasing Density Enables More Bootstrap & Less CD Power

 Density gradients drive bootstrap current
more efficiently than temperature gradients*

*Temperature effect
depends on flows & orbits
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Increasing Density Enables More Bootstrap & Less CD Power

 Density gradients drive bootstrap current
more efficiently than temperature gradients*

- For given By, higher density raises bootstrap *Temperature effect
fraction modestly: fz¢ from 70% to 90% depends on flows & orbits

— Decreases auxiliary current drive: 30% to 10%

\ 200 Pner

g
=
o
. X z 100 Ph/co

Requires density at pedestal to be close to the o

empirical tokamak ‘Greenwald’ density limit Fix u = 3.5

0.80 0.85 0.20 0.95 1.00
Neped/Mew

Density normalized to current
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Current Drive & Thermal Efficiency Highly Beneficial to Net Electricity

500 T T T
- Higher efficiencies raise net electric power & Q Mo = 0.4 1y = 0.33

— Or permits lower Bn, current or field solutions

400
tH = 0.4

7M'n\.\.\'
f;;u_:;;;‘\'\- i

w
Q
o

* We increased values to n¢p = nry = 0.4
—In line with other reactor studies

)
S

Net Electricity
(MW)

Ny =0.33
EU DEMO 0.33 0.25 0.08 Ph/co (MW)
C-ATPilot  0.3320.4 0.25>0.4 0.08->0.16
ARC 0.4 0.43 0.28
ARIES ACT1 0.575 0.4 0.23

ARIES ACT2 0.45 0.4 0.18
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Current Drive & Thermal Efficiency Highly Beneficial to Net Electricity

500 T T T
. C . . =0.4 nry=0.33
- Higher efficiencies raise net electric power & Q | Tl i |

— Or permits lower Bn, current or field solutions

400
tH = 0.4

,M.n\.\'\.
-:1:0_:;;;\' i

w
Q
o

* We increased values to n¢p = nry = 0.4
—In line with other reactor studies

)
S

Net Electricity
(MW)

Ny =0.33
EU DEMO 0.33 0.25 0.08 Ph/co (MW)
C-ATPilot  0.3320.4 0.25>0.4 0.08->0.16
ARC 0.4 0.43 0.28
ARIES ACT1 0.575 0.4 0.23
ARIES ACT2 0.45 0.4 0.18

\Z

HFS LHCD

testing
on DIlI-D

A research challenge to develop »
more efficient current drive
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Steady State Approach Provides
High Confinement Reactor Solutions at 6-7T with 200MWe

* Higher density, field & efficiencies < gy becomes highly levering to net electricity

Fix fow =0.9

400

Net Electric

E Power

= NET

o)

s H&CD
o Power

N=Nc=0.4, Nopoa/Now = 0.9 H=1.5 4m 7T
IPS-Fastran TGLF-EPED-CD-EFIT Steady States

3.0 4.0
B
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Steady State Approach Provides
High Confinement Reactor Solutions at 6-7T with 200MWe

* Higher density, field & efficiencies < gy becomes highly levering to net electricity

Fix fow =0.9 Net Electric Power (Mw)
400 11.04 A
. Net Electric Tos LR
s Power 2
é NET ~ 10.0
Q 200 = g6l _
2 H&CD = 2 ~
& Power =~ 9.0 ?
- e
M=Nco=0.4, Nepea/Now = 0.9 H=1.5 4m 7T 8'5’% \ i )
(0 LL_PS-Fosiran TGLF-EPED-CO-Ef1T Stocdy States 80 \A“ fUl\lY non;lnduchve
3.0 ﬁ 4.0 ‘0.80 085 0.90 095 1.00
N . ped
/ Densityn, /ngw

* Family of fully non-inductive solutions at 4m radius
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Steady State Approach Provides

High Confinement Reactor Solutions at 6-7T with 200MWe

* Higher density, field & efficiencies < gy becomes highly levering to net electricity

Fix fow = 0.9 5 0Net Electric Power (mw) -l .

400
| 94 8.1
- Net Electric
; Power q 49 6.5
= NET By 42 3.6
—
O 200 Hos 1.3 1.5
C;) HEED Q 10 17
o Power
8.5* Pheqf 84 38
o B s e oo < Al fully non;inductive Ps 873 658
3.0 4.0 "0.80 0.90 00 Neut. 23 1.8
Bn Densit
ensity ne /nGW R=4m, nry =1n¢p = 04
 Family of fully non-inductive solutions at 4m radius 2% Ingw=1, 200MWe

Conventional (6T) & high temperature superconductor (7T+) solutions
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Principles of the steady state approach
—Shaping, broad profiles & high B 2 high bootstrap
—Benefits to stability, fransport, pedestal and fast ions

* Pilot power plant projection
— Analyfics, methodology, projections

- Benefits and Research needs
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

» Broad profiles and higher field raise energy confinement
— DIII-D discharge show promising parameters

Promising progress on DIII-D DIII-D #176440

High confinement, density,
(kradls) & bootstrap, low rotation

Oy s

1 2 3 4 5
Time (s)
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

» Broad profiles and higher field raise energy confinement 1.5 \
— DIlI-D discharge show promising parameters J

» Higher pressure & density increase bootstrap
— 80-90% bootstrap current - reduce recirculating power

o
w
T

Numerical

02 04 06 08 10
Normalized radius

o
'oO
o
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

Safety factor, q

» Broad profiles and higher field raise energy confinement
— DIlI-D discharge show promising parameters

* Higher pressure & density increase bootstrap
— 80-90% booftstrap current — reduce recirculating power

g remains > 2
0 02 04 06 08 10
> | Normalized radius

oo N M O

* Broad profile & lower current improves stability

— Removes low order surfaces that tear and disrupt
10

— High B wall-stabilized even with high wall distance Ideal MHD ‘kink’
»Reduced disruptivity, stresses and device risk . pressure limit
(wall stabilized)
100%
| Disruptivity per shot DilI-D E 6
=
50%[- wﬁon = _EZ_-_A;T_,_li«_r_qqgg ___________
free No wall stability limit
L ' 21
0% 3 = 5 = oL . . . .
Qg5 (at peakpy) 1.4 1.5 1.6 1.7 1.8
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

» Broad profiles and higher field raise energy confinement
— DIlI-D discharge show promising parameters

* Higher pressure & density increase bootstrap
— 80-90% booftstrap current — reduce recirculating power

* Broad profile & lower current improves stability
— Reduced disruptivity, stresses and device risk

* Requires less gross fusion performance per MWe

PEs 873 658
— Decreases neutron loads at walll

Neut. 23 1.8

R=4m, NrH =MNcp = 0.4
n2 /mgw=1, 200MWe
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

» Broad profiles and higher field raise energy confinement

— DIlI-D discharge show promising parameters PB ' \3
q = 7\
» Higher pressure & density increase bootstrap I=NR SN 3 ‘@\
— 80-90% booftstrap current — reduce recirculating power Qg’;' ‘5‘
» Broad profile & lower current improves stability PB, 14 B '
— Reduced disruptivity, stresses and device risk 99 =N R T8

e

o s
LA

K
N4

...
if.

* Requires less gross fusion performance per MWe

— Decreases neutron loads af walll 4 %
» Lower fusion power and current reduce heat fluxes X-point ‘ » >
— Modest core radiation needed to reach ITER-like heat fluxes v

« While maintaining ‘H-mode’ N=2 divertors """

— But a 24/7 fusion power plant will need to go further i | o | o

q) 85 85 20%
@ | 18 | 18 | 50%
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Advanced Tokamak Principles Bring Key Benefits to Power Plant Solution

» Broad profiles and higher field raise energy confinement
— DIlI-D discharge show promising parameters PB ' v,

* Higher pressure & density increase bootstrap
— 80-90% booftstrap current — reduce recirculating power

.

=

=
6'@0

/ .0

N\ g
O"
f?

L) e

* Broad profile & lower current improves stability PB,
— Reduced disruptivity, stresses and device risk 9¢ =R

S

o s
LA

K
N4

...
if.

* Requires less gross fusion performance per MWe

— Decreases neutron loads af walll 4 %
» Lower fusion power and current reduce heat fluxes X-point ‘ » >
— Modest core radiation needed to reach ITER-like heat fluxes (

« While maintaining ‘H-mode’ N=2 divertors """

— But a 24/7 fusion power plant will need to go further i | o | o

a | 8 | 8 | 20%
But key challenges remain... @ | 18 | 18 | 50%
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Key Plasma Physics Challenges Require Research

» Critical plasma physics challenges

— Validate core physics solution in reactor regimes N
& relevant sources: stability, transport, EP, pedestal

— Scope the limits of density, pressure, confinement
—24/7 power handling solution compatible with core
— Compatibility with wall materials
— Control of transients (disruptions, ELMs)

» Issues common to many future concepts Controlling variable (Heat Fiux)

1E.g. furbulence

1 broadening
i M"K:j«(’

Past

Behavior

1 Develop
1 N
1 solutions
1
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Key Plasma Physics Challenges Require Research

» Critical plasma physics challenges

— Validate core physics solution in reactor regimes N
& relevant sources: stability, transport, EP, pedestal

— Scope the limits of density, pressure, confinement

1E.g. furbulence

1 broadening
i M’“‘I}

Behavior

—24/7 power handling solution compatible with core Past Test

— Compatibility with wall materials i Develop

— Control of transients (disruptions, ELMs) i solutions g
* Issues common to many future concepts Controlling variable (Heat HU;

* And critical engineering & technology challenges
— Advanced bucking approach to engineering to handle high loads
— Demountable HTS for performance & nuclear tesfing mission
— Broad technology program: Materials, breeding, power extraction, RF,
reactor design, licensing, safety, etc.

Multiple facilities needed to meet the challenge
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A Major Upgrade to DIII-D is Proposed to
Address Core-Edge Integrated Solutions

* Performance rise to address integration
physics and solutions
—Hot, thermalized, opaque, low collisionality

Volume
Current

* Flexibility to pioneer each part of core and
edge solution, and marry them together
— Profiles, shape, divertor, materials, 3D

* Technology testbed to resolve plasma compatibility
—Components, materials, diagnostics, RF, pellets, conftrol

« Scientific investigative capability to project reactor

Equips DIII-D to discover the path to an FPP
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Portfolio of Facilities Worldwide Have Capability

to Resolve the Path to a Compact AT Fusion Pilot

Larger scale

« Projection . Higher Field
to reactor 4 Bt o

Superconducting Long Pulse

* Material &

PFC evolution ., * Operational

techniques * Core-edge

_ demonsiration

} * Long pulse

control « Compatibility with metal walls

Key physics

+ Aspect ratio
+ Divertor magnetic geometry
. Super Alfvénic i ions & high B

18 - Nuclear
testing

* Flexibility: Pioneer innovative exhaust & core
solutions. Marry them together

Reactor
Relevance

* Relevance: Discover physics basis & techniques
to project to future fusion reactors

Flexibility



An Attractive Compact Pilot Plant is Possible
when Advanced Tokamak Physics Principles are Applied

Integrated physics simulation model show:

* High By permits high bootstrap to reduce recirculating power
—Mitigates divertor heat flux challenge and neutron wall loading

* High density highly levering in reducing auxiliary power needs
and alleviating divertor challenge
—Permits operation at safety factor levels where disruptions are avoided

* Research needed to resolve this (or any) concept
—Validate AT physics - high By high density transient free scenario
— Efficient current drive and steady state divertor solution
—High temperature superconductors, reactor materials & engineering

A challenging but tractable mission for research
to enable a fusion pilot plant

Dili-D
L
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With Key Upgrades DIlI-D Can Meet The Challenges

Modular Divertor
Series toisolate &
understand dissipation

RF rise for core By rise
Explore FPP profiles, confinement, Low v* |
stability & edge compatibility in

reactor-relevant physics regimes

' Higher local
Higher pressure Pressure density
& density
Wall tests

Qualify materials &
interaction with core

New materials
& test facilities

Higher pressure
& density

volume
& current

Shaperise

Explore path to raise 3D rise [—
pressure & density Control transients Q!‘“-;’
and runaways @ =

ES
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With Key Upgrades DIlI-D Can Meet The Challenges

Modular Divertor
Series toisolate &
understand dissipation

RF rise for core By rise
Explore FPP profiles, confinement, Lowv* |
stability & edge compatibility in

reactor-relevant physics regimes Higher | |
: 4 igher local
Higher pressure Pressure density
\ & density
P Wall tests

Qualify materials &
interaction with core

, New materials
/ & test facilities

volume

& cyrrenf \

Shaperise

Explore path to raise Synergy: 3D rise r -

pressure & density Test high dissipation with high Control fransients g (L;.j) %
performance & close remaining  4ng runaways S — =
gaps on reactor physics regimes K)

Unique capability to prepare for FPP and ITER
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“Enabling Research” Required in Seven Areas
for Pilot Plant Decision & Design

1. ITER participation “Enabling Research:”
— Vdlidated physics models & reactor knowhow

2. Stable high performance fully noninductive core Tokamak research enables
ITER & pilot plant missions

3. Dissipative Divertor

4. Efficient current drive

5. Reactor nuclear materials Work on engineering &

6. Demountable high temp superconducting magnets technologies to advance
pilot plant approach

7. Engineering design & breeding concepts

Low
Enabhng Research} D@n @m Nuclear testing w» pco:Er

New faciities

Will provide opportunities for breakthroughs in understanding &
performance that transform prospects for all fusion paths!



ITER Provides Vital Learning for Path to a Fusion Reactor

» Exploration of the burning plasma concept!

« Testing physics & techniques at reactor scale &
physics regimes

» Development of validated predicted models

* Understand how to build and operate a large
scale nuclear fusion facility

[}

ITER participation is vital if the U.S. is serious about fusion
energy and building its own reactors

* Crucially informs U.S. approach to a D-T reactor
* Know-how you just don't get from reading the papers

" ITER

Steady State
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Simulations Provided Key Insights over Basic AT Logic

 Density levers high B approach by enhancing current drive
— And helps maintain temperature close to optimum for fusion cross-section

* Toroidal field improves confinement by reducing turbulence,
— In addition to (known) improvements in stability margins S (kink) and g (safety factor) limits

» Compatibility of plasma solution with heating & current drive systems

* Prediction of confinement and fusion performance, required scale, field etc.
— Rather than choice in a systems code or flawed Heg scaling

Identifies limits of configuration as we optimize to a more compact
scale to find design points and set required scale and field

Shows trade-offs between various target parameters are possible
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Fuel dilution due to core radiation remains a

challenge for all DEMO concepts

« As core impurity fraction is increased, higher Z_; drives down
fuel ion fraction

fi =1- 2fHe - Zimpﬁmpl Pfus x fiznszvp

— even a small change in f; dramatically reduces fusion power

0.5 T T T

- Kallenbach et. al. have predicted impurity ®)
profiles fora R = 9m, a = 2.25m DEMO 04F .08 0 oo uw |
— scdaling to C-AT DEMO parameters results in ""E S i
a 60% reduction in fusion power, 2x more % 03
than the 33% assumed in this study =
— fxr = 1x1072 needed for 172 MW of core g o2y -
radiation = [ 102 Ar, 307 MW
+ aradiative model is needed in GASC to O s 05w, 80 MW
ensvure self-consistancy 00h e
00 0.2 04 pO.G 0. 1.0
DuI-D P

19 NATIGNAL FUSION FAGILITY
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The World is Focused on the Advanced Tokamak Path to Fusion Power

 Presently envisaged steps beyond ITER are largely based
on the conventional aspect ratio Advanced Tokamak

* But not very ‘advanced’ - high recirculating power:

— EU-DEMO: 5.2T, ~9m, ~500MWe, Bn~2.6, Qy5~3, H=1.1, fgs~34%
* Based on “what we can do now” technologies & pulsed

— ARC: 9T, ~3.3m, ~200MWe, Bn~2.8, Qy5~7, H=1.8, fas~63%
« Exploits high temperature superconductors,

but optimistic confinement assumptions

— Many devices proposed are large size & high fusion power

 Does next step need to be so big?

Can Advanced Tokamak principles & different constraints

be applied to enable a more cost attractive next step device? R(m) |63]|55]| 68| 9
— Reduce recirculating power to reduce required scale Pva) | 1117 |17 | 2
— Combine required missions info single generation Prs(ow) [ 18] 3 | 29| 18
— Minimum size for research mission Pret(Gw) | 1| 1 |05 05

RJ Buttery/IAEA-LP/2022 63 [Kessel FST 2015, Tobita NF 2009, Kim NF 2015, Feredici FED 2014]



Target: Low Capital Cost Pilot Plant

To Close Gap on Future Power Plant

» Key challenges for self-sustaining reactor:
—Breeding - Nuclear materials — Net electricity

» Address these in a single compact ‘pilot plant’ test facility
— Combine missions to remove a generation
— Low capital cost » affordable

» U.S. proposals for ARC, Compact-AT and ST-pilot at similar scales _
— 100-200MWe, R~3-4m, A~2-3 & benefit from high femperature superconductors
— Build on expertise being developed in ITER
— May require additional research in parallel to ITER

Pilot to address critical issues prior to low COE power plant
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A Compact Pilot Plant Could Work Alongside & Beyond ITER

to Bridge The Gap To Large Scale Fusion Power

- Demonstirate net electricity production
— Integration of heat - electricity generation
— Proof of potential — device can power itself

» Test nuclear materials in fusion
reactor environment

- Demonstrate and optimize breeding technology
— Ability to change out materials with demountable HTS

» Configuration sustained in truly long pulse conditions (months)

Lay the groundwork for low COE successors
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frad core

PsoL (MW)

3x1073
— PsoBa/NR=17.4,B
g Radiative Techni to Meet Heat Flux Chall
— PeoB/NR=85.5,8
o2 PECLB/NR = 555,57 aaiarive lecnniques 10 meer hed UXx alienge
I~
S
mi feewith 0 |l
radiafive divertor Br=8T, Ro=4m
Fig 15: GASC parameter scans in confinement
and density for four different design points.
Contours of limits in L-H threshold power
raction and poloidal heat flux metric 3
R Q=10 ;
10, g
0.2 core radiation constrain the soluton space fo three levels of
0.0 kaypton impurity seeding. The newtron wall B
120 loading limit Nw<4MW/m? s also shown, but
100 only constrains operation in a few cases
fB5<1 for every shaded operational space.
80
60 \
Br=8T, Ro=5m
°
o
g
35 12 14 16 18 2.0 %
H -
98pby2
Fig 14: Self-consistent GASC solutions using krypton impurity seeding to limit
divertor heat load below two variations of the ITER divertor metric. Impurity 5e-
fraction, total core radiated power fraction, power into the scrape-off layer, I f,=25e-3
and L-H power threshold fraction are shown for By = 6T and 8T design points 0.4 A
e 1.0 12 14 16 18 20 10 12 14 1.6 18 2.0
(fBe?=1, Pror=200MWe, Ry=dm).
Hogpby2 Hogpby2
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Tokamak is Limited in Current and Pressure by Global MHD Modes

* Current in tokamak drives a field line twist
— Measure through safety factor, g < RB /I

* Twist in field drives global MHD ‘kink’ mode
— Leads to limit in current for given field
* Pressure also drives this distortion
—Increased field, B — tensions & stabilizes mode

* Magnetic islands also emerge at modest q

* ‘Ballooning’ limit to pressure is stabilized
by increased twist (current, I)

 Leads to Pressure limit ~ BI / R

= By =100

2[10 <P>

B1/Re

typically ~3-5

Q. Where and how to optimize in ) and q ?
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Pressure pushes field line through surface

48
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"
12 ,:::? u g
imisation ~ MG
10+ "/,.’: i |
/ v
¢ /'?/'\§ B \
T \
3" A SQ | E \
JSE | .= \
4t (9 = \
/9 | v ‘
z /I‘bo £ \
ol . . : L5
0 0.2 0.4 0.6 0.8 1.0

1/q ~ Current

[Troyon et al., PPCF 1985]
[Sykes and Wesson, NF 1985]



High Pressure Gradient Leads to a Net ‘Bootstrap’ Current

Gyro-orbits drift due to non-uniform field lead to banana orbits

2. Currents due to ¢
neighbouring banana
orbits largely cancel

Traces out banana
trajectory, width

1
« /Current
3: More & faster particles
nearer the core lead to

net “banana current” f- ;
®

1. Orbits tighter
« VPressure/Current /

/ y 4 where field
" , . stronger
lon gyro-motion [
4: Transferred to helical ‘

bootstrap current by collisions

Utilize bootstrap to provide the plasma current g\
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Combine Bootstrap with Auxiliary Current Drive in Steady State Tokamak

* Bootstrap fraction: fps < p/I* o« CpsBnqos Radio Frequency Current Drive

+ Additional current drive from RF heating Wave accelerates electrons
preferentially decreasing their collisionality

Vph = (1)/k||

— Requires suitable population > high T

— Collisions scatter electrons, reducing current E
* Requires low density

PcpT y PcpBnB

= fcp X D5 — Collisional asymmetry drives most @ —
niR n current, not momentum from wave! |
* Solve for current drive fzs + f-p = 1: [Fisch FST 2014]
3 p3
Qep X Prus 1 Ccp ByB® €pyand B always help!
cD

Pcp X (1—CpsBnaos) (m/I)?

More bootsirap removes need for Lower density - higher fcp
current drive at high g5 (lower current) Higher current raises Q as Py~ BiI*B?

Alternate paths to steady state through bootstrap or current drive



Bn Limiting Global MHD Modes Can Be Stabilized by Device Wall

» Pressure driven kink displaces
magnetic flux about the plasma
Routine stable operation

. . above no-wall limit
° CondUCfIng wall converts this 106521 107603

slower Resistive Wall Mode

~
L O R I R L

No-Wall Limit (2.4/;)

* Mode gives energy to particles
with rotational orbit resonances

DIll-D

ol L 1 I I
1000 1500 2000 2500 3000
Time (ms)

* Magnetic feedpack can [Garofalo PoP 2006]
control any residual mode

How do we increase wall stabilization of this pressure limit?
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Compact Fusion Pilot Poses Critical Plasma Research

and Integration Challenge

Compact scale requires higher power densities: ook PO
> High pressure and energy confinement 0 o 7
— To fuse sufficiently in smalller volume & retain heat g 400 EU-DEMOQ
i 300 < o /
» Power handling and wall compatibility I § o IZR;} Db
— To mitigate hot plasma exhaust at high duty cycle MM C - T

[0}
00 01 02 03 04 05 06 07 08 09 1.0

. . . Self-driven current fraction
» Plasma interacting technologies and control

—To resolve in plasma & fusion environment Confinement
Tritium Breeding Multiplier]
Each needs dramatically improved solutions Divartor fiocy
over WWKN, requiring physics investigation Neutron Wall Loading (MW/m?) soffI o
. . Pulse Length| 2 [T 100000
— & account for key cost drivers in an FPP > Density|  «2[@%o.
TF Bucking Solution| piug Bucked [} | unbucked
Different elements trade off against each other “éatgz;;ﬁiyt“; %
—Test together to resolve integration physics Reactivity multiplier] 15[ 10 Cost drivers
Scaled CD Efficiency] 15[iglos for an FPP
Tritium Processing Time (hr) 1[Hs [Wade FED 2021]

Blanket Power Multiplier] 1 3j| o
Plasma research vital to FPP design " Capital Cost, $Bn
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Compact Approach Requires Advanced Engineering & Technology

Vertical change out scheme in
» Requires advanced bucking approach Japanese SN design (C-AT is DN)
to deal with forces &
— 'Bucks’ toroidal field coil forces off solenoid

& central plug to cancel out stress by >50%

Blanket
module

» High Temperature Superconductors
enables demountability ‘
— Permits changes out for nuclear materials mission e Siate) ~d

— Raises performance and increases duty cycle @

Maintenance port

* Broad technology program (CPP plan)

— Materials, breeding, power extraction, RF,
reactor design, licensing, safety, etc.

—ITER plays key role in reactor scale expertise

Aggressive technology program required ivertorcasste
RJ Buttery/IAEA-LP/2022 72 [Utoh, Fus. Eng. Des. 2017]



