Long plasma duration operation analyses with an international multi-machines database Presented by Xavier LITAUDON¹ on behalf of the group on **Coordination on International Challenges on Long** oms for Peace and Develo duration OPeration (CICLOP)

 $\mathbb{C}2\mathbb{Z}$

¹CEA, IRFM, F-13108 St-Paul-Lez-Durance, France

TECHNOLOGY ON A MISSION

• Key integration challenge for fusion energy development in magnetic devices: to combine high fusion performance with Long Pulse Operation (LPO)

have set-up an international group¹

[¹https://nucleus.iaea.org/sites/fusionportal/ciclop/ SitePages/Home.aspx]

- to share experience and best practice on LPO and steady-state
- to promote activities, collect and disseminate information on LPO issues
- to address physics and engineering LPO issues for tokamak and stellarator
- Terms of reference approved at IEA Fusion Power Co-ordinating Committee on Jan. 2020
- Set-up a high level multi-machines database expanding the pioneering work of M. Kikuchi²
- 10 tokamaks: ASDEX Upgrade, DIII-D, EAST, JET, JT60-U, KSTAR, TCV, TFTR, Tore Supra, WEST
 2 stellarators: LHD and W7-X
 - 109 pulses and around 3200 entries with data obtained up to Dec. 2021
 - <u>Time window averaged quantities</u>

[²Frontiers in Fusion Research, Springer]

Long Pulse Operation (LPO) ?

• LPO is adressing control of stable plasma for duration well above the plasma confinement time and approaching plasma wall integration time scales

- ITER 400s H-mode regime belongs to the LPO category

Operational limits for the high fusion performance and long pulse duration

Machine / Wall limits

- Limit in available flux
- Limit in energy (I²t limit) or forces for the coils
- Limit in injected power and/or Energy
 - Max Energy limit that can be exhausted by the cooling system is reached
 - Max. power reached
 - Max duration of injected power reached
- Limit in power/energy/ temperature for PFC
 - Limit on wall or divertor temperature is reached
 - Limit on heating systems
- Limit in wall/divertor erosion
 - Flakes or dusts production (that can detached and lead to disruptions)
 - Erosion and migration
- Limits in measurements in control system
 - Current plasma measurement drift
 - Neutron limits, Gas limits

Plasma physics limits

- Limit in MHD stability (current and pressure)
 - Pressure/Beta limits
 - Current instabilities
 - Disruption force
- Limit in core/pedestal confinement
 - Core instabilities
 - Limits in pedestal pressure
- Limit in plasma radiations
 - Core impurity accumulations (e.g. W in the core)
 - UFO resulting from erosion leading to radiative collapses
- Limit in density
 - Uncontrolled density evolution (wall recycling evolution)
 - Stability limit approaching density limits

LPO in L & H modes: injected energy vs high performance duration

Heat exhaust capability for LPO ?

Opgrade
 Plasma he

- Plasma heating power normalised to the plasma surface as a proxy for heat exhaust capability
- Highest values on ASDEX-Upgrade

- P/S ~ 0.3 MW/m² up to machine limits

- LPO >10s with P/S <0.1MW/m²
- ITER target
 - $(P_{inj}+P_{\alpha})/S \sim 0.2 MW/m^2$ for 400s to 3000s
- WEST with ITER Plasma Facing Units

will develop 1000s LPO approaching

ITER target

Present limits and status of Long Pulses Operation

- LPO > 100s achieved at reduced power below ~5MW and P/S below 0.1MW/m²
- Injected Energy record on LHD with 3.3GJ
 - Limit: C flakes and radiative collapses with C walls
- EAST reached 1.7GJ/1056s (Dec. 2021) with metalic walls
 - Limit: hot-spots in the RF/LHCD systems. Ongoing optimisation
- W7-X reached up to 100s with 2MW/ECRH
 - Limit: no active cooled divertor
 - Actived cooled divertor installed in 2021 and operation starts in 2022
- WEST reached 49s/3MW
 - Limit: absence of active cooling of the lower divertor configuration
 - Fully actively cooled divertor with ITER Plasma Facing Unit installed in 2021 and operation starts in 2022
- EAST and KSTAR sustained H-mode operation
 - Limits:
 - $\,\circ\,$ available transformer flux when not fully inductive
 - $\,\circ\,$ ELMs and slow evolution of edge conditions could lead to degradation
 - $\circ\,$ coupled power

Core ion pressure [Atm] x confinement time [s] vs high performance duration

- Reduction of fusion performance by 2 orders of magnitude when increasing duration from ~1s to 100s
- Significant progress with metallic wall operation in support to ITER & DEMO
 - ASDEX-Upgrade, EAST, JET, WEST
 - JET with sustained DT fusion power ~10MW/5s - 59MJ

[Tonné, Villari, Milnes SOFT 2022] [Mailloux, Giroud EPS 2022]

[ITER scenarios Green et al. PPCF 45 (2003) 687]

Fusion performance vs duration: metallic wall and Deuterium-Tritium plasmas

product [Atmxs]

Fusion triple

Optimise core ion pressure in LPO ?

Pressure \uparrow in tokamaks & stellerators?

- ion heating \(\circ) + density profile optimization ?
 [Beurskens NF 61 (2021) 116072 & NF 2022]
- LPO in tokamaks achieved in a domain of dominant electron-heating at reduced density for Current Drive (CD) but low T_{io} (<3keV) [Song 2022, Bucalossi 2022]
- KSTAR optimisation of T_{io} ~10keV/20-30s at low loop voltage but reduced density [Han Nature 2022, Wang SOFT 2022]
- LPO in stellarators achievable at higher density since magnetic configurations intrinsically stable without non-inductive

CD [Jakubowski NF **61** (2021) 106003]

Conclusion: significant worldwide effort to prepare ITER LPO operation

- Significant progress and upgrades for extending the duration and performance, e.g.
 - EAST world record in pulse duration for tokamaks following upgrades
 - EAST and KSTAR long pulses H mode regime
 - JET has sustained D-D and D-T operation for 5s with ITER like wall [Donné SOFT 2022, Milnes SOFT 2022, Mailloux EPS 2022]
 - WEST installed actively cooled divertor (2021) with ITER Plasma Facing Units, operation in 2022 [Bucalossi Nuc. Fusion 2022]
 - LHD D-D operation and advanced control algorithms to avoid radiative collapses
 - W7X installed actively cooled divertor (2021), operation in 2022 [Bosch SOFT 2022]
- LPO
 - Tokamaks: dominant electron heating at reduced density, low P_i. Need to increase density, maximize P_i and address non-inductive current challenge at higher densities
 - Stellarators: higher density & P_i since external non-inductive CD not required
 - For all: increase power& energy but evolving wall interaction could lead to discharges crossing unstable domain
- Higher performance/duration expected with actively cooled metallic wall in near future
- Full W Divertor Test Tokamak project has been initiated in EU

ON BEHALF OF THE CICLOP TEAM and JET contributors (for the JET DT data)

M BARBARINO², A. BOCK³, H-S BOSCH⁴, S BREZINSEK⁵, J BUCALOSSI¹, S CODA⁶, R DANIEL⁷, A EKEDAHL¹, K HANADA⁸, C HOLCOMB⁹, S IDE¹⁰, B V KUTEEV¹¹, E LERCHE^{12,13}, T LUCE¹⁴, P MAGET¹, T MORISAKI¹⁵, Y SONG¹⁶, J STOBER³, D VAN HOUTTE¹, Y XI¹⁶, L XUE¹⁷, S YOON¹⁸, B ZHANG¹⁶

¹CEA, IRM, F-13108 St-Paul-Lez-Durance, France

²IAEA, Vienna International Centre, PO Box 100, 1400 Vienna, Austria

³Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

⁴Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany

⁵Forschungszentrum Jülich, Institut für Energie und Klimaforschung-Plasmaphysik, Jülich, Germany

⁶Ecole Polytechnique Fédérale de Lausanne (EPFL), SPC, CH-1015 Lausanne, Switzerland

⁷Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat State, India

⁸Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan

Acknowledgement: C. Bourdelle¹ CEA

⁹Lawrence Livermore National Laboratory, Livermore, California, USA

¹⁰National Institutes for Quantum and Radiological Science and Technology, Naka, Japan

¹¹National Research Center, Kurchatov Institute, Moscow, RF

¹²CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK

¹³ LPPKMS Ecole Royale Militaire B-1000, Brussels, Belgium

¹⁴ITER Organization, 13067 Saint Paul Lez Durance, France

¹⁵National Institute for Fusion Science, Toki, 509-5292, Japan

¹⁶Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China

¹⁷Southwestern Institute of Physics, Chengdu 610041, China

¹⁸NFRI Daejeon 305-806, Republic of Korea

Back-up

Long Pulses Operation in L & H modes: Injected power vs high performance duration

Fusion performance vs duration normalised to confinement or current diffusion time

How to increase ion temperature in LPO ?

Logos

Window averaged quantities and Definition of stationarity level

- The fusion performance is stationary when the averaged <Y> $_{\tau}$ does not vary with respect to time , i.e. any value of τ
 - First moment remain constant independently of the time window , τ (this is the definition of the weaksense stationarity)
- One can quantify a level of stationarity, S_{τ} , for a given time constant by the ratio of the averaged performance $\langle Y \rangle_{\tau}$ to $\langle Y \rangle \tau_1$ where τ_1 is lower than τ
 - S $_{\tau}\text{=}$ <Y> $_{\tau}$ / <Y> $_{\tau1}$ for any τ_{1} < τ
 - A stationary pulse should have S $_{\tau}$ close to one

Illustration/application with two JET discharges

Stationarity level

