Effect of separatrix density on ELM instability in long-pulse H-mode plasmas on EAST

Y.F. Wang^{1*}

G.S. Xu¹, G.Z. Jia¹, Z.Y. Liu^{1,2}, Q. Zang¹, T. Zhang¹, Y.M. Duan¹, T.F. Zhou¹, M.R. Wang¹, N. Yan¹, R. Chen¹, L. Wang¹, G.H. Hu¹, Q.Q. Yang¹, K.D. Li¹, X. Lin¹, Y. Ye¹, H.Q. Wang³, X.Z. Gong¹ and EAST Team

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China ²University of Science and Technology of China, Hefei, China ³General Atomics, PO Box 85608, San Diego, USA

Presented at the Technical Meeting on Long-Pulse Operation of Fusion Devices Vienna, Austria, IAEA Headquarters

November 2022

*E-mail: <u>yfwang@ipp.ac.cn</u>

- 1. Background
- 2. ELMs in minute-scale long-pulse H-mode plasmas on EAST
- □ 3. Large ELM mitigation by changing strike point location
- **4**. Summary

1. Background

2. ELMs in minute-scale long-pulse H-mode plasmas on EAST

□ 3. Large ELM mitigation by changing strike point location

Stationary small/no ELM regime with good confinement is a solution to large ELMs for long-pulse operation of future fusion reactors

- Type-I ELMs at low ν_e^* would be intolerable for long-pulse operation of future fusion reactors.
- Several small/no ELM regimes with good confinement have been developed so far.
- PBM has been widely recognized as the main stability limit of pedestal region.

A detailed physics understanding of these regimes is necessary for extrapolation to future devices.

The importance of pedestal density profile is highlighted in recent studies on small/no ELM H-mode regimes

- EAST natural grassy ELM regime [G.S. Xu et al., 2019, PRL]
 - Characterized by a wide pedestal with low $\ensuremath{\nabla} n_e$
- EAST low-recycling no-ELM H-mode regime [Y. Ye et al., 2019, NF]
 - Low pedestal foot density plays a key role in achieving this regime.
- DIII-D RMP grassy ELM regime [R. Nazikian et al., 2018, NF]
 - Strongly correlated with RMP-induced density pumpout
- DIII-D natural grassy ELM regime [Y.F. Wang et al., 2021, NF]
 - Characterized by high $n_{e,sep}/n_{e,ped}$ and low ∇n_e
- AUG small ELM regime [G.F. Harrer et al., 2018, NF]
 - Higher n_{e,sep} with stronger gas fueling appears to facilitate access to this regime.

1. Background

2. ELMs in minute-scale long-pulse H-mode plasmas on EAST

□ 3. Large ELM mitigation by changing strike point location

Large-amplitude ELMs appear in minute-scale long-pulse H-mode discharges on EAST

- Typical discharge information:
 - I_P ~ 450kA, unfav. B_T, USN
 - q₉₅~ 6.1
 - $n_e \sim 3.0 \times 10^{19} \text{m}^{-3}$
 - H_{98y2} ~ 1.06
 - P_{aux} ~ 3.4MW (RF-only)

- Global plasma parameters remain unchanged during the H-mode phase, such as I_P, n_e, W_{MHD} and H_{98y2}, as well as T_{e,core}, n_{e,ped} and T_{e,ped}.
- Li-II signal intensity increases and D_{α} signal intensity decreases gradually with time.
- Small ELMs are replaced by large ELMs.

Separatrix density appears to decrease with the decrease in edge fuel recycling in the H-mode phase

- The electron density near separatrix is observed to decrease during the H-mode phase, as well as D_{α} background intensity and divertor vacuum neutral pressure.
- The AXUV signal intensity in the edge region shows a gradual decrease.
- The ECE background intensity near pedestal top region remains unchanged.

Linear pedestal stability analysis before and after the decrease in separatrix density n_{e,sep}

- The decrease in separatrix density results in an increase in both pedestal pressure gradient and edge current density.
- The ballooning stability boundary also expands due to the enhanced ion diamagnetic stabilizing effect.
 - ion diamagnetic frequency $\omega_{*i} \sim \nabla p_e / n_e$

The operational point moves from near the ballooning boundary to near the peeling boundary as n_{e,sep} decreases

> Numerical scan of separatrix density n_{e,sep}

 The ballooning mode at pedestal foot region may help drive particles and heat transport, preventing larger ELM bursts.

Lower plasma density at low edge recycling appears to facilitate small ELMs in minute-scale long-pulse H-mode discharges on EAST

- The experimental data in minute-scale long-pulse H-mode discharges in 2017 campaign has been collected.
- With lower plasma density, no large ELMs appear even with a decrease in D_{α} signal.

Pedestal stability analysis of ELMs with different plasma density

 Lower plasma density and thus lower pedestal top density lead to lower ∇p and j, making PBMs more stable.

□ 1. Background

2. ELMs in minute-scale long-pulse H-mode plasmas on EAST

3. Large ELM mitigation by changing strike point location

Large ELMs are mitigated by changing strike point location

- Basic discharge information:
 - I_P ~ 500kA, fav. B_T
 - q₉₅ ~ 5.5
 - $n_e \sim 4.2 \times 10^{19} \text{m}^{-3}$

$$-P_{aux} \sim 4.5 MW$$

 $-\beta_{p} \sim 1.35$, W_{MHD} ~ 200 kJ

ASIPP

- By moving the strike point on the horizontal target plate away from divertor corner region, large ELMs are successfully mitigated.
- At the same time, plasma energy confinement performance remains unchanged.

The enhanced separatrix density is thought to be an important reason for the large ELMs mitigation

- The n_{e,sep} is enhanced when the SP moves away from the divertor corner region.
- The operational point moves to near the ballooning boundary, with the ideal ballooning mode marginally unstable at the pedestal foot region.

SOLPS-ITER simulation suggests a higher ionization source exists in the SOL region when the strike point moves away from the divertor corner

2D distribution of D⁺ source (40% of full drift effect)

- SOLPS-ITER simulation for different strike point locations
- When the strike point moves away from the divertor corner region, there is a higher ionization source in the SOL region, providing fueling near separatrix and thus enhancing separatrix density.

ASIPP

16

1. Background

2. ELMs in minute-scale long-pulse H-mode plasmas on EAST

□ 3. Large ELM mitigation by changing strike point location

Summary

- It has been repetitively observed that small ELMs could be replaced by large ELMs in the minute-scale long-pulse H-mode discharges on EAST.
 - Correlated with decrease in edge fuel recycling and $n_{\text{e,sep}}$
- Pedestal linear stability analysis suggests that the decrease in n_{e,sep} plays an important role in triggering the large ELMs.

- Operational point moves from near ballooning boundary to near corner of the PBM boundary.

- Lower plasma density at low edge recycling level appears to facilitate small ELMs in minute-scale long-pulse H-mode discharges on EAST.
 - Lower $n_{e,ped}$ leads to lower ∇p and j, preventing large ELM bursts.
- Large ELM mitigation has been achieved by changing the strike point location on the horizontal target plate of lower tungsten divertor on EAST.

- Accompanied by significantly enhanced n_{e,sep}

• SOLPS-ITER simulation suggests that a high ionization source exists in the SOL region when the strike point is located away from the divertor corner.

- Providing fueling near separatrix and enhancing n_{e,sep}

Thank You

