

Plans for long-pulse operation in JT-60SA

T. Wakatsuki¹, H. Urano¹, M. Yoshida¹, J. Garcia² and the JT-60SA Experiment Team ¹QST, Japan ²IRFM, CEA, France

> IAEA TM on Long-Pulse Operation of Fusion Devices, 14-17 November 2022, Vienna

- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

JT-60SA Project for ITER and DEMO

JT-60SA:

- Large superconducting: R_P~3.0 m, a_P~1.2 m
- High plasma current: I_P/B_T=5.5 MA/2.3 T
- High power and long pulse: 41 MW × 100 s
- Highly shaped: S=q₉₅I_P/(a_PB_T) ~7, A~2.7, κ_x ~1.9, δ_x ~0.5

Mission:

- Contribute to the early realization of fusion energy by addressing key physics issues for ITER and DEMO
- Aim at fully non-inductive steady-state high β_N operations above the no-wall ideal MHD stability limits, for long time (~3-4 τ_R)

Sustainment Time (s)

Machine enhancement and staged approach

JT-60SA

	Phase	Expected operation schedule		Annual Neutron Limit	Remote Handling	Lower Divertor (wall material)	P-NB Perp.	P-NB Tang.	N-NB	NB Energy Limit	ECRF 110 GHz & 138 GHz	Max Power	
Initial Research Phase	phase I	2020-2023		-		-	0	0	0	0	1.5MWx5s	1.5MW	
		2025	Н	(N2)			3MW	3MW		23MW x 14s duty = 1/30 1.5M 1.5M		19MW	
	phase II	2025		0.0540	9	Carbon Div. Pumping 6.5 (Carbon) Actively cooled Carbon Div.Pumping (10MW/m2 ss, 15MW/m2x5s) (Carbon)	6 5MW	mw 7MW	10 MW		1.5MWx100s + 1.5MWx5s	26.5MW*	
		2026	D	3.2E19			0.514144						
	phase III	2027		(N2)	R&D							33MW*	
Integrated Research Phase	phase I	2029 - 2032	D	4E20 (water)			d) 13MW d			20MW x 100s 30MW x 60s duty = 1/30	7MW x 100s	37MW	PFPO-
	phase II	2033 -	D	1E21 (water)		Actively cooled Tungsten Div.Pumping (Tungsten)							PFPO-
Extended Research Phase		>5y	D	1.5E21 (Boron)	Use	Actively cooled Tungsten Advanced Structure (U. Div. to be considered) (Tungsten)	16MW	8MW		34MW x 100s		41MW	FPO-1

6054

Objectives for long pulse operations in JT-60SA

- JT-60SA aims to demonstrate the real-time control in long pulse discharges exceeding <u>the time scales governing the plasma system</u>
 - MHD : ~ 10^-6 s (ideal), ~ 10^-3 s (resistive)
 - Transport: 10^-2 ~ 10^0 s
 - Current diffusion : ~ 10^1 s
 - Wall saturation : ~ 10^2 s
- There are many issues to be studied for long pulse operation
 - Compatibility of radiative divertor with high performance core plasma
 - Control of current/pressure profiles under high $\rm f_{BS}$ condition
 - Impurity accumulation
 - Long sustainment of high-beta plasma that exceeds no-wall limit
 - etc...

- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

Coil flux usage for LPO

Pre-magnetization Phase

20

10 Coil Current (kA) 0 -10 Plasma Operation Phase

De-magnetization Phase

- Assumption for resistive flux consumption : $0.45\mu_0 RI_p$
- Loop voltage at $I_{\rm p}$ flattop is predicted as ~0.06 V
 - Flattop duration ~ 100s will be possible

Plasma Current (MA)

200

200

Heat handling capabilities of Divertor

- Actively cooled divertor for integrated research phase is under design
 - 10 MW/m² for steady-state
 - For high β_{N} steady-state
 - Need to develop radiative divertor scenario that is compatible with high core performance
 - 15 MW/m^2 for 5 s
 - To allow flexible experiments for ITER physics and risk mitigation experiments
 - e.g., enhance core performance without impurity seeding

ITER Standard Op. (No imp. seeding)

Graphite tile

TZM heat sink

9

H & CD in long pulse up to 100 s is possible

EF3 PERP:#3,#4 PERP:#5.#6 **NB** systems NBI PERP: 3.0 Positive-ion-source NB flexible deposition #1.#2 CS1 85 keV, 24 MW EF1 \square EC 1.0 CS2 CO:2u, CTR:2u, PERP:8u P-NB(tang.) EC **Negative-ion-source NB** CO 🛛 N-NB(tang.) CS3 NNB -1.0 500 keV, 10 MW, Off-axis P-NB(perp.) EC d TANG CS4 EC PERP: **EC** systems EF6 -3.0 #13,#14 7 MW (9 Gyrotrons, 4 EF5 2.0 Launchers, movable mirror) **EC current drive N-NB driven current Torque input** (82), 110, 138 GHz, Toroldal injection angle=15° 0.3 0.10 (Nm⁻²/MW) pper NNB 5 MW J_{N-NB} (MA/m²) .0 > 5 kHz modulation (NTM) 0.015 0.08 2.5MW+2.5MW PNB-c 138GHz2.3T 0.01 0.2 j_{eccD}(MA/m²) Lower NNB 0.06 0.005 PNB-perp

5 MW

0.8

0.4 0.6

0

0

0.2

0 -0.005

-0.01

-0.015

-0.02

0.2

Ω4

Absorbed

EC

PNB-ctr

0.04

0.02

0

0.4

0.6

0.2

density

Torque

EC

1MW injection

0.8

Real-time control system architecture

11

- Plasma Integrated Controller (PIC) sends commands to
 - PF coil power supply system for I_p/shape control
 - Gas puff, pellet and MGI systems for fueling
 - RF and NB systems for heating
 - Real-time diagnostics are connected to inner RM sub loop
 - High level functions (e.g., actuator manager, plasma state monitor) will be implemented in PIC

*Clock signals and interlock signals are distributed by other hard-wired networks

Structure of control integration

Example: actuator manager If an actuator is shared with some controllers, actuator manager is required

Example: Soft landing logic If an exception like I_p deviation happens, soft-landing controller takes over

- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

Scenario development

Target plasmas

- ITER standard (q_{95} ~3)
- ITER hybrid (*q*₉₅~4-5)
 - Reduced current, improved confinement operation
 - Candidate of longer pulse high performance operation in ITER
- DEMO steady-state (q_{95} ~5-6)
 - Higher beta ($\beta_N > 4$), fully-noninductive operation

Target scenarios are investigated

• Serve as workhorses for long pulse operation development

Scenario prediction basis for JT-60SA

Model validation & verification (V&V) has been done with JET & JT-60U AT scenario exp.

- Integrated codes used : TOPICS, CRONOS, JINTRAC, ASTRA, METIS
- Anomalous transport model : GLF23, CDBM, Bohm/gyro-Bohm

Hybrid Scenario

CDBM predicts or underpredicts exp.

->

can be used for conservative prediction

17

Garcia NF2014, Hayashi NF2017

Scenario prediction basis for JT-60SA

18

Model validation & verification (V&V) has been done with JET & JT-60U AT scenario exp.

- Integrated codes used : TOPICS, CRONOS, JINTRAC, ASTRA, METIS
- Anomalous transport model : GLF23, CDBM, Bohm/gyro-Bohm

Hybrid scenario with high $\beta_N \sim 3$ is envisioned

• I_p/B_T=3.5 MA/2.3 T

- Prediction (CDBM+GLF23) : β_{N} = 3.2, H_{98}= 1.3, f_{BS} = 0.40
- 29 MW NB with 7 MW EC (138GHz)

[L. Garzotti, NF2018]

Off-axis ECH Assists *I*_P **ramp-up for Hybrid Scenario**

Advanced Superconducting Toka

20

- Current profile control during *I*_P ramp-up for hybrid scenario without sawtooth
- Favorable ECH power deposition to obtain q>1 is estimated
 - ECH applied ρ ~0.33 allows a compromise between a q>1 and high central $T_{\rm e}$
 - $P_{\text{ECH}} \ge 2.2 \text{ MW}$ to maintain q>1
- Anomalous current diffusion (flux pumping, dynamo effect, etc) is not considered
 - Its effect will be studied in JT-60SA

[J. Morales, PPCF2021]

DEMO-relevant plasma can be aimed at integrated research phase I

- Integrated core-pedestal model developed incorporating with MHD
 - Consist of transport, equilibrium, heating/CD, pedestal & MHD codes
 - Provide exact steady-stage solution

- prediction of high β_N steady-state plasma
 - κ =1.9, δ =0.5, f_{GW}=0.85, I_p/B_T=2.3 MA/1.72 T
 - 16 MW NB with 7 MW EC (110GHz) : $H_{98,y2}$ =1.6, β_N =4.3, f_{BS} =0.68 (see profiles in figure)

1

0

(a)

0.2

0.4

model used

CDBM transport

0.6

0.8

- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

Heat handling Scheme by Impurity Seeding Investigated

23

- Impurity control for heat handling to divertor plate for a long pulse discharge
- Divertor heat load reduction <u>in C-wall</u> by Ar seeding in I_P =5.5 MA, P_{inj} =15-35 MW, β_N ~3.
- 10 MW/m² is reached keeping small impurity increment at separatrix
- Ar is more effectively radiated at higher T_e than Ne to reduce heat load
- Maximum power allowable to divertor heat load is larger for Ar

Ar+Ne Mixed-Impurity Seeding Compatibility between High β_N and High Radiation

- Integrated divertor code extended to multi-impurity seeding simulation
 - Kinetic treatment of impurities
- By increasing Ne, high radiation in divertor and lower radiation in core-edge can be realized.
 - Lower Ar puff rate in Ar+Ne seeding
 - Ar-only seeding: Ar impurities are stagnated in top of SOL
 - Ar + Ne seeding: Ar impurities are transported to inner divertor plasma

```
Target: n_{e,sep} \sim 1.7 \times 10^{19} \text{ m}^{-3}, q_{div} < 10 \text{ MW/m}^2
in steady-state high \beta_N \sim 4 operation,
I_p=2.3 \text{ MA}, P_{out} = 23 \text{ MW}, P_{rad,tot}=13 \text{ MW}
```


- JT-60SA and long pulse operation (LPO)
- Machine capabilities of JT-60SA for LPO
- Scenario investigation
- Heat handling investigation
- Performance control investigation

Sustainment of high-beta steady-state plasma by temporal power control of ECH or ECCD is investigated

 $\frac{P_{in}^{26} MW (P_{NNB/PNB/ECH} = 5/14/7MW)}{\beta_{N}^{4.3} (I_{p}/B_{t} = 2.3MA/1.7T, f_{GW}^{0.85}, Z_{eff} = 2 with C)}$

<u>1.5D plasma profiles</u> : TOPICS with CDBM transport model

<u>NB fast ion</u> : Monte-Carlo particle code OFMC

EC : Ray tracing & Fokker-Planck code EC-hamamatsu

Small power perturbations -> ITB moves out/in-ward, β_N in/decreases with current diffusion time in ITB region (order of 10 s)

P & j profile misalignment due to bootstrap current by ITB

-> ITB movement

ECH -> ECCD can lock ITB by making weak-magnetic-shear region close to ITB foot (similar way to Hayashi NF2005, Garcia PRL2010)

q_{min} + β_N control using reinforcement learning

- $q_{min} + \beta_N$ control in ITB plasma will be challenging due to high f_{BS} fraction
- Neural-network-based control system is trained through +2000 times simulations using RAPTOR[1]
 - Target : 2 < q_{min} < 3, β_N = 3
- Trained system is tested in simulations using TOPICS
 - Achieved stable control even for a plasma simulated with another code/model
 - Encouraging for the application of the trained system to real experiments

[1]F. Felici et. al. Plasma Physics and Controlled Fusion 54(2), 2012, 025002

Summary

- JT-60SA will explore long pulse operation exceeding the time scales governing the plasma system
 - Flattop duration will be 100 s
 - Divertor will handle 10 MW/m² for steady-state
 - 24 MW Pos-NB, 10 MW Neg-NB, 7 MW EC will be injected 100 s
 - High level functions of Plasma Integrated Controller is under development
- Strong work have been done for preparation of long pulse operation
- Target scenarios are investigated as basis of LPO development
- Heat handling using impurities (Ar, Ne) are investigated
- Performance control of highly self-regulated high-beta ITB plasma are investigated
 - Sustainment of high-beta steady-state plasma by temporal power control of ECH or ECCD
 - $q_{min} + \beta_N$ control using reinforcement learning