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Outline

e Brief (picturesque) bio
* High-performance computing (HPC)

o Some history

o Some well-recognized software used in nuclear engineering

o A few application examples:

* Thermal-hydraulics (from Argonne Nat’l Lab)

* Neutron Transport (from Argonne Nat’l Lab)

* Neutral-particle Transport (from Texas A&M U.)

* Multiphysics simulations of molten salt reactor (from CNRS/Texas A&M U.)

e Data sciences with HPC
o Motivations (multi-query problems)
o Data-driven model-order reduction

o Application to multiphysics simulation of molten salt reactor (from Texas
A&M U.)

e Conclusionsand Outlook
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* Near-real-time PWR accident simulator for crisis management
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e 2004-present: Nuclear engineering, Texas A&M U.

Computational radiation transport, Multiphysics, and -

Predictive science https://multiphysics.engr.tamu.edu/ e
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My research interests

Radiation transport

Center for Exascale Radiation Transport
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Multiphysics software development (RELAP-7, RattleSNake, Pronghorn)
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Idaho National Laboratory

Data sciences and machine-learning

Nuclear radiation effects i g

Multiphysics model reduction
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Evolution of processor speeds

Instruction-level parallelism:
* Architecturaltechniquethat allows the overlap of
individual machine operations (add, mult, load,
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Moore’s law: ~straight line on semilog scale

Moore’s Law: The number of transistors on microchips doubles every two years [y

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
OurWorldinData.org — Research and data to make progress against the world's largest problems.
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FLOP costs decreasing faster than RAM costs

* Our ability to sense, collect, generate and calculate on data is growing
faster than our ability to access, manage and even “store” that data

Source: David Turek, IBM

100
10 S
1
0.1 —
0.01 =
B Dollars/Mbyte A Dollars/MFLOP

The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it
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Perspective

The CRAY-2
Series of Computer Systems

2010; 800 MHz ; 1.6 GFLOPS

1985; 244 MHz ; 1.9 GFLOPS

L e

2015: 1,000 MHz : 3 GFLOPS
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https://www.top500.org/

U.S. Presidential Information Technology Advisory Committee (PITAC)

 Computationalscienceis a rapidly e e
growing multidisciplinary field that T
uses advanced computing capabilities

to understand and solve complex COMPUTATIONAL SCGIENGE:
problems. ENSURING AMERICA’S

 Requiresadvancesin hardware and COMPETITIVENESS
software.

PRESIDENT’S
INFORMATION TECHNOLOGY
ADVISORY COMMITTEE
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High Performance Scientific Computing

Introduction to HPSC

What is High Performance
Scientific Computing?

Multi-process

What is
Computing Scaling uiti-process

Challenge

Overview of application takes too
computational long to run
landscape
Scientific
Simulations

Examples

Application doesn't fit

in memory of single machine

Application doesn't fit
&
takes too long

Data Analysics and
Knowledge Extraction

.H.'lat.:i!;i;r&;fpahld

1-*"" L]

ParaView

Parallel Visualization Application

Partially adapted from the Lincoln Laboratory Supercomputing Center (MIT)
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High Performance Scientific Computing
Introductjon to HPSC

| Parallel technologies: levels of parallelism %
What is
Scientific

Computm

2 MPI
:‘.‘ #node 1 /’/ \\\ #node 2
4 & K D U S
CPU| | CPU| --- |CPU CPU| [CPU| --- |CPU
N T o
cion | | o
— - x . _—

e, X A
MPI+CUDA

How to control hybrid hardware:
MPI - OpenMP - CUDA - OpenCL ...

iﬁ | TEXAS A&M ENGINEERING A M ‘ T
5 EXPERIMENT STATION I| 3 TEXAS A&M UNIVERSITY



High Performance Scientific Computing

Introduction to HPSC \
What is High Performance |

Single Scientific Computing? how do W address
process B ®heparallel computing
What is B challenges
Scientific u ’
Computing? ’ ] ‘
V. hat is an Interactive

Why High Performance Supercomputing

Scientific Computing? Environment

T

Multi-process

* --_ L

mas

main()

{
#pragma omp parallel / OMP_NUM_THREADS
{
cout << "Hello World I*'; % { @ G @
| P

}

Thread
Team
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Interacting with a supercomputer:

Job scheduling

/ Cluster

You can NOT run parallel / 9. \
program in Login Node! . " -1 a" :.

slurm

workload manager

b atch
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\ Compute Node /

slurm

workload manager 15
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HPC for Scientific computing (SC)

Verification
(Am | solving the
equations correctly?)

Validation
(Am | solving the correct
equations?)

Uncertainty
Quantification

(What is the goal of my
simulation? What are the
Qol’s?)

phenomenon, process etc.

—

output, f(x)
I\IJ - (=] - (%]

|

mathematical model

'

numerical algorithm

'

simulation code

'

results to interpret

modelling

numerical treatment

implementation

visualization
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FastMath: Frameworks, Algorithms and Scalable
Technologies for Mathematics

| MATH

Applied mathematics algorithms, tools, and software for

HPC applications

S— P ETS T O Portable, Extensible Toolkit for Scientific Computation
— C “" Toolkit for Advanced Optimization

PETSc
Matrices
Vectors Compressed Blocked Compressed  Block
SELLE Sparse Row Sparse Row Diagonal Dense Others
(ALD (BALI) (BDIAG)

Linear Solvers

GMRES CG  CGS  BICGSTAB  TFQMR  Richardson  Chebychev  Others

Preconditioners
Additive Block Jacobi ILU 1CC Others
Schwartz Jacobi
Non-linear Solvers Time Steppers
: o R . .. Backward Pseudo Time )
Line Search Trusted Region  Others Euler Euler Stepping Others
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Example-1: Computational fluid dynamics

ENERGY User case: Using higher-
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Example-2: MOOSE, a Multiphysics HPC platform

_ ®MOOSE
I|N.

1kIW Temperature
0.000 0.014 0.029 540 965 590

O .
0007 0022 |me=4869Days oo, 578
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Example-3: Massively parallel radiation transport

. . TEXAS A&M UNIVERSITY
 neutron,thermal radiation, gamma, electron Department of
 steady-state, time-dependent, criticality, adjoint, etc. . Nuclear Engineering
e advancedsolutiontechniques = 2018
» discretizationin space/angle/energy NATIONAL DEBT OF UNITED STATES

o Largest problem we have done: 20.8 Trillion unknowns S 20 502 740 304 4‘]‘]
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Example-4: Reactor containment

t=2600s

Gas distribution and pressurization inside the containment during an SB-
LOCA (Julich, Germany, Kelm et al.).

Based on OpenFOAM for CFD
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Example-5: Multiphysics of molten salt reactor

— Bubble
separator

i Pumes Conceptual Design of the MSFR core cavity

MSFR core

W — cavity filled

—J with the fuel
~" sa

ey » Temperature (K)
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* High-performance computing (HPC)
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What is SC/HPC for?

* Increaseinsight and understanding of physical
phenomena
o DNS> LES > RANS > lumped-parameter TH

* Providelayersin a hierarchy of increasingly complex
models
o Are we capturingthe right physics?
o First-principlesimulationsto ascertain the range of
applicability of (cheaper) low-order models

o New designs/configurations not handled by legacy codes
* Scaling bridging: .

o Material science <-> continuum FEM

o NSF's Material Genome Initiative (MGI)

Standard Upae = Mside cnd @ ek

Metallic F

* Experimental design
o simulation-informed experiments

* Sometimes, too costly/dangerous experiments:
o Accidents(core meltdown), disasters, NW, ...

TEXAS A&M ENGINEERING
EXPERIMENT STATION
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What is SC/HPC not for?

e Pretty pictures (the “viewgraph” norm = useless simulations).

* More demanding, complex simulations that do NOT increase your
ability to predict the outcome (the quantities of interest)

increased accuracy in prediction

resources spent ($)

o Kord Smith (ANS M&C 2003)
* PWRs: 3D reaction rates 3% pin power, axially integrated power: 1%
* +/-10 ppmcritical boron at start-up = “close to perfect”
o Uncertainties in some physics (e.g., XS evaluations, fuel thermo-mechanics,
TH, ...) may overwhelm the accuracy of a solver for instance.
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How about a much quicker turnaround for quality

design calculations?

* High-dimensional (high-order/first-principles)
models :
o Generatea wealth of data
o Require high-end HPC platforms

o Mayneed to be repeated for every change in the input
parameterspace.

 Multi-query HPC problems (repeated calculations
with changesin the input) can become expensive
o Design optimization
o Uncertainty quantification
 DataSciences:
Learn from HPC simulations to predict new cheap
HPC-quality simulations
- Think data assimilation (“image/video compression”)

TEXAS A&M ENGINEERING
By | EXPERIMENT STATION



Many simulations with parametric variations

0.0

“00 02 0.4 06 0.8 10

Common features among the family of solutions

Can we learn from that? = data-driven subspace discovery
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Discovered subspace from learned data

=)

 Obtained via Singular Value
Decomposition of the
snapshots (learned data)

e Reduction comes from the low
number of modes needed

Singular Value Decay

102

10!

107

1077

AN

10-10

N

NUCLEAR ENGINEERING
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Model Order Reduction: to reduce the computational complexity

e Model order reduction (MOR) is a set of techniques aimed at reducing the computational complexity of
mathematical models in numerical simulations.

@ Description of reality (model) + problem input data (in) — PDEs — discretization — large-scale
model with a large number of unknowns (degrees of freedom, DoFs) N.

Full Order Model (FOM): Solve & = f(x(t),in(t)) with|z e RY

@ Model order reduction aims at lowering the computational complexity of such problems by reducing the
# of DoFs (r < N)

Reduced Order Model (ROM): Solve ¢ = f,(¢c(t),in(t)) |c€ R" withr < N

such that
|z — Uc|| < Cr||in]| with lim C, =0
‘:‘"—}I\r

U: reconstruction operator.

K — Need to determine the

expansion coefficients I
o Full Order Model (FOM) z € RV (as functions of the input

parameters)

e Reduced Order Model (ROM) ce R" withr <N

@ Reconstruction: |z & Uc | where U (size N x r) is a data-driven discovered basis.




Data-driven sub-space discovery

Physical system | + | Data(p) | modeling

0.8

? GeN-ROM - Model-Order Reduction tool for OpenFOAM - X
File Help
Effective multip

Loading fluid flow t i Sigma_r_1 Field to plot= [T

Loading s ) r - q I
Loading fuel temperature ma 0 = 5. Sigma_r . N M i‘%

Loading coolant
ding fluid flow t

Sigma_r_.

i Sigma_r 4
ding fluid flow t SN

Loadi elf matric
Sigma

Sigma_r_|

nuSigma_f

nuSigma_f_4

nuSigma_f
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Model-order reduction for advanced reactors

Bubble Offline/Training phase | Online/Evaluation phase
I~ separator . !
(expensive) : (cheap)
— Pumps :
L4
— HXs _ ' | Evaluati ities of
= Creating : valuating Quantities o.
£ E Full-Order Model (FOM)| Ltezari il
MSFR core 2 £ :
|| cavity filled 2= T
T~ with the fuel E = H
salt P = v Solving ROM
w 1
oz Learning about the E Y
ks system using the FOM '
i & = 5
Salt draining = E : Assembling
ST = 2 ¥ : Reduced-Order Model
- g 1
<] Building Reduced : (ROM)
Operators from reduced operators

The reduced equation system

pM¢e'P + pc"D’Tgc“D - C”‘T;c“o —nDc" + PcP +T(Bc" — |up,in|SE”)

V4
- Z <|FP,Z|SP,Z - sfr,chﬁ) - p,Bs(ACT - refsT) = 07 (16)

z=1
02 pGc'® =0 (17)
o Some of the reduced operators
0.6
u, u, u 1 u u
0.8 M;; = <1/,I_ o 1/,jD>D gr_mk = <¢j D, ;V . (¢i P ¢‘<D)>D
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I sye o N f l
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0 02 04 06 08 1 12 14 1.6 18 2 22 z Pz
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Pz D
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= (v i) Gy = (41,9459,
m
Cin
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Reconstructed Flux (left) - Reconstruction Error (right)

Uncertain parameters (23 total):
e Diffusion coefficients, fission and removal cross sections (4= 10% around the

nominal values)
e Pumping force, external coolant temperature, Heat transfer coefficient,

Pr-number, thermal expansion coefficient
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Reconstr. Temperature (left) — Reconstr. Error (right)
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Reconst. Velocity (left) - Reconstruction Error (right)
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Model-order Reduction: huge speed ups

B Quantities of interest:

e Effective multiplication factor (ke)

e Maximum temperature of the system (T ax)
B Propagation of uncertainties: Monte Carlo approach with 50,000 samples
B Speedup in the UQ including training: approximately factor of 1,500
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2 2
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Graphical User Interface Demo
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Conclusions and EOF

* Intro to HPC for scientific computing in nuclear engineering and sciences
* Focus SC/HPC efforts where gains are visible/tangible

 Emphasize Predictive Science (VVUQ) and whether the simulation efforts will
have an impact?

* Seek certifiable reduced-order models for quick design cycle
o Borrowfrom machine-learning and big-data science.
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