
High performance computing & 
data sciences for reactor systems

Workshop on Computational Nuclear Science and Engineering

Jean Ragusa, 
jean.ragusa@tamu.edu

Nuclear Engineering / Institute for Scientific Computation / 
Center for Large Scale Scientific Simulations /

Center for Exascale Radiation Transport 
Texas A&M University

July 16, 2021 IAEA (online)

Presenter
Presentation Notes
Af



Outline
• Brief (picturesque) bio
• High-performance computing (HPC)

o Some history
o Some well-recognized software used in nuclear engineering
o A few application examples:

• Thermal-hydraulics (from Argonne Nat’l Lab)
• Neutron Transport (from Argonne Nat’l Lab)
• Neutral-particle Transport (from Texas A&M U.)
• Multiphysics simulations of molten salt reactor (from CNRS/Texas A&M U.)

• Data sciences with HPC
o Motivations (multi-query problems)
o Data-driven model-order reduction 
o Application to multiphysics simulation of molten salt reactor (from Texas 

A&M U.)

• Conclusions and Outlook
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 That’s me (on GitHub       )

 That’s me ( in real life)

• Accelerator-driven production of tritium

+

• Near-real-time PWR accident simulator for crisis management
Reactor physics and Applied Math Department

• 2004-present: Nuclear engineering, Texas A&M U.
Computational radiation transport, Multiphysics, and 
Predictive science  https://multiphysics.engr.tamu.edu/
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My research interests

• Radiation transport
Predictive Science Academic Alliance Program (PSAAP)

Stockpile stewardship

• Multiphysics software development  (RELAP-7, RattleSNake, Pronghorn)

• Data sciences and machine-learning
Nuclear radiation effects

Multiphysics model reduction 
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Evolution of processor speeds
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Clock speed has flattened 

Transistor count still rising 
(multi-core designs);
“Moore’s law re-interpreted”

Power consumption
(W/cc is the issue)

Parallel instructions
(Instruction-level 
parallelism or ILP)

Instruction-level parallelism: 
• Architectural technique that allows the overlap of 

individual machine operations (add, mult, load, 
store, …)

• Multiple operations will execute simultaneously to 
speed up the execution



Moore’s law: ~straight line on semilog scale
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FLOP costs decreasing faster than RAM costs
• Our ability to sense, collect, generate and calculate on data is growing 

faster than our ability to access, manage and even “store” that data
Source: David Turek, IBM
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Perspective 
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1985 ; 244 MHz ; 1.9 GFLOPS

2010; 800 MHz ; 1.6 GFLOPS

2015; 1,000 MHz ; 3 GFLOPS



Top 500 list
• 50th list of top-500 

supercomputers 
• Twice a year

o Nov. 2017
o June 2021

• https://www.top500.org

• In 2017, 2nd time in the 
25-year history of the 
Top-500 list that the 
USA has failed to secure 
any of the top 3 
positions. 
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U.S. Presidential Information Technology Advisory Committee (PITAC)
• Computational science is a rapidly 

growing multidisciplinary field that 
uses advanced computing capabilities 
to understand and solve complex 
problems.

• Requires advances in hardware and 
software. 
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12Partially adapted from the Lincoln Laboratory Supercomputing Center (MIT)
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Interacting with a supercomputer:

Job scheduling
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HPC for Scientific computing (SC)
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Verification
(Am I solving the 
equations correctly?)

Validation
(Am I solving the correct 
equations?)

Uncertainty 
Quantification
(What is the goal of my 
simulation? What are the 
QoI’s?)



FastMath: Frameworks, Algorithms and Scalable 
Technologies for Mathematics
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Example-1: Computational fluid dynamics
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Example-2: MOOSE, a Multiphysics HPC platform
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Example-3: Massively parallel radiation transport
• neutron, thermal radiation, gamma, electron
• steady-state, time-dependent, criticality, adjoint, etc.
• advanced solution techniques
• discretization in space/angle/energy

o Largest problem we have done: 20.8 Trillion unknowns 
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Example-4: Reactor containment

Gas distribution and pressurization inside the containment during an SB-
LOCA (Julich, Germany, Kelm et al.). 
Based on OpenFOAMfor CFD
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Example-5: Multiphysics of molten salt reactor
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Conceptual Design of the MSFR core cavity 

Two-phase flow

Neutronics
Thermal-

hydraulics

Thermomechanics

Delayed Neutrons

Density and Doppler effects
Turbulence

Compressible vs 
Incompressible 

flow

Thermal radiation 
heat transfer

Phase change

Steady-state 
conditions

Transient 
conditions

Fuel burn-up

Fluid structure 
interactionThermal fatigue(CNRS, Tano) 
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What is SC/HPC for?
• Increase insight and understanding of physical 

phenomena
o DNS > LES > RANS > lumped-parameter TH

• Provide layers in a hierarchy of increasingly complex 
models
o Are we capturing the right physics?
o First-principle simulations to ascertain the range of 

applicability of (cheaper) low-order models
o New designs/configurations not handled by legacy codes 

• Scaling bridging:
o Material science <-> continuum FEM
o NSF’s Material Genome Initiative (MGI)

• Experimental design 
o simulation-informed experiments

• Sometimes, too costly/dangerous experiments:
o Accidents (core meltdown), disasters, NW, …
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What is SC/HPC not for?

• Pretty pictures (the “viewgraph” norm = useless simulations).
• More demanding, complex simulations that do NOT increase your 

ability to predict the outcome (the quantities of interest)

o Kord Smith (ANS M&C 2003)
• PWRs: 3D reaction rates 3% pin power, axially integrated power: 1%
• +/-10 ppm critical boron at start-up = “close to perfect”

o Uncertainties in some physics (e.g., XS evaluations, fuel thermo-mechanics, 
TH, …) may overwhelm the accuracy of a solver for instance.
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How about a much quicker turnaround for quality 

design calculations?
• High-dimensional (high-order/first-principles) 

models :
o Generate a wealth of data
o Require high-end HPC platforms
o May need to be repeated for every change in the input 

parameter space.
• Multi-query HPC problems (repeated calculations 

with changes in the input) can become expensive
o Design optimization
o Uncertainty quantification

• Data Sciences:
Learn from HPC simulations to predict new cheap 
HPC-quality simulations 

 Think data assimilation  (“image/video compression”) 
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Many simulations with parametric variations

Common features among the family of solutions

Can we learn from that?  data-driven subspace discovery



Discovered subspace from learned data
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• Obtained via Singular Value 
Decomposition of the 
snapshots (learned data)

• Reduction comes from the low 
number of modes needed



Model Order Reduction: to reduce the computational complexity
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Need to determine the 
expansion coefficients c
(as functions of the input 

parameters)



Data-driven sub-space discovery
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Model-order reduction for advanced reactors
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Reconstructed Flux (left) - Reconstruction Error (right)
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Reconstr. Temperature (left) – Reconstr. Error (right)
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Reconst. Velocity (left) - Reconstruction Error (right)
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Model-order Reduction: huge speed ups

35



Graphical User Interface Demo
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Conclusions and EOF
• Intro to HPC for scientific computing in nuclear engineering and sciences
• Focus SC/HPC efforts where gains are visible/tangible
• Emphasize Predictive Science (VVUQ) and whether the simulation efforts will 

have an impact?
• Seek certifiable reduced-order models for quick design cycle 

o Borrow from machine-learning and big-data science.
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