
High Performance Computing
and
High Performance humans in Computing

Maria Grazia Pia
INFN Genova

mariagrazia.pia@ge.infn.it
maria.grazia.pia@cern.ch

Maria Grazia Pia, INFN
Genova 1

IAEA (Virtual) Workshop on
Computational Nuclear Science and Engineering

12-16 July 2021

MGP
Does not like writing bios
Physicist at INFN (Istituto Nazionale di Fisica Nucleare),
Section of Genova, Italy
⁃ Pre-covid: large fraction of time at CERN, looking forward to post-covid era

Associate Editor of IEEE Transactions on Nuclear Science
Moderator of arXiv Computational Physics (physics.comp-ph)

High Energy Physics background
⁃ CERN, FNAL, SLAC

Monte Carlo development (Geant4) and applications,
physics data libraries validation
Statistical data analysis, scientometrics, epistemology
No Facebook, Twitter, LinkedIn, Instagram… but google me, and you will find
track of my research activity
Maria Grazia Pia, INFN Genova 2

Maria Grazia Pia, INFN Genova 3

Creative Commons Attribution 4.0 International
DOI:10.7494/csci.2008.9.3.47

106 CPU cores
1 exabyte storage

>170 sites
42 countries

Summit supercomputer
CC BY 2.0 Carlos Jones/ORNL

Credit:ORNL

Credit:CERN

>27000 NVIDIA Volta GPUs
> 9000 IBM Power9 CPUs

What is HPC?

Summit

exploit workload parallelism to
achieve scalability

manage data to achieve
efficiency of operation HP

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7494/csci.2008.9.3.47

HPC systems
HPC computers are networks of processors
⁃ Very fast memories
⁃ Low-latency, high-bandwidth communication systems

• between the processors
• between the processors and the associated memories

Homogeneous: only CPUs
Hybrid: CPUs + GPUs
⁃ GPUs can handle millions of threads simultaneously, are more

energy efficient, have faster memories, require less data transfer
⁃ CPUs oversee the computation

Maria Grazia Pia, INFN Genova 4

speed of operation
parallelism to perform multiple operations
efficient use of critical components
electrical power that it consumes
reliability
how easy to program

Key features of
HPC architecture

System share by application area

Maria Grazia Pia, INFN Genova 5

Top supercomputers

Supercomputer performance

Pe
rfo

rm
an

ce
 in

 G
FL

O
PS

yearCC BY-SA 3.0 AI.Graphics

Rmax PFLOPS Location Manufacturer

Fugaku 442.010 RIKEN, Japan Fujitsu

Summit 148.600 ORNL, USA IBM

Sierra 94.640 LLNL, USA IBM

Sunway TaihuLight 93.015
Natl. Supercomp.
Centre, China NRCPC

Perlmutter 64.590 NERSC, USA Nvidia

Country PFLOPS

USA 669
Japan 594
China 564

Performance

FLOPS: floating-point operations per second

Sum
Top
#500

https://creativecommons.org/licenses/by-sa/3.0

Commodity clusters
A group of integrated computer systems
⁃ Standalone components (COTS), capable of independent operation
⁃ Integration network is separately developed
⁃ Off the shelf mass storage
⁃ Interfaces adhere to industry standards

Very successful
⁃ First one in 1997, ~50% of Top 500 systems in 2005, ~ 85% today

Parallel programming modalities
⁃ Throughput computing: efficiently run a large number of jobs that

are independent or require minimal communication
⁃ Message-passing: requires a significant amount of communication

and coordination within the application
• communicating sequential processes model, exemplified by the MPI

⁃ Shared-memory multiple-thread applications
• exemplified by the OpenMP (open multiprocessing) programming model

Maria Grazia Pia, INFN Genova 6

LHC

Maria Grazia Pia, INFN Genova 7

WLCG
LHC data are currently handled by
the Worldwide LHC Computing Grid

• >170 sites
• 42 countries
• ~106 CPU cores
• 1 exabyte storage
• 2 million tasks per day
• global transfer rates > 60 GB/s
• >12000 physicists around the world

LHC experiments are exploring GPUs for
accelerated event reconstruction and simulation

CMS estimated resources required HL-LHC era
Resource gap

WLCG is a massive distributed computing infrastructure

(a) (b)

Figure 3: CMS estimated CPU (3a) and disk space (3b) resources required into the

HL-LHC era, using the current computing model with parameters projected out for

the next 12 years [39].

simulation is achieved. Other packages provide tools for supporting the develop-

ment process; they include compilers and scripting languages, as well as tools for

integrating, building, testing, and generating documentation. Physics simulation is

supported by a wide range of event generators provided by the theory community

(PYTHIA [31], SHERPA [32], ALPGEN [33], MADGRAPH [34], HERWIG [35],

amongst many others). There is also code developed to support the computing

infrastructure itself, such as the CVMFS distributed caching filesystem [36], the

Frontier database caching mechanism [37], the XRootD file access software [38] and

a number of storage systems (dCache, DPM, EOS). This list of packages is by no

means exhaustive, but illustrates the range of software employed and its critical role

in almost every aspect of the programme.

Already in Run 3 LHCb will process more than 40 times the number of collisions

that it does today, and ALICE will read out Pb-Pb collisions continuously at 50 kHz.

The upgrade to the HL-LHC for Run 4 then produces a step change for ATLAS and

CMS. The beam intensity will rise substantially, giving bunch crossings where the

number of discrete proton-proton interactions (pileup) will rise to about 200, from

about 60 today. This has important consequences for the operation of the detectors

and for the performance of the reconstruction software. The two experiments will

upgrade their trigger systems to record 5-10 times as many events as they do today.

It is anticipated that HL-LHC will deliver about 300 fb-1 of data each year.

The steep rise in resources that are then required to manage this data can be

estimated from an extrapolation of the Run 2 computing model and is shown in

Figures 3 and 4.

In general, it can be said that the amount of data that experiments can collect

and process in the future will be limited by a↵ordable software and computing, and

– 7 –

(a) (b)

Figure 3: CMS estimated CPU (3a) and disk space (3b) resources required into the

HL-LHC era, using the current computing model with parameters projected out for

the next 12 years [39].

simulation is achieved. Other packages provide tools for supporting the develop-

ment process; they include compilers and scripting languages, as well as tools for

integrating, building, testing, and generating documentation. Physics simulation is

supported by a wide range of event generators provided by the theory community

(PYTHIA [31], SHERPA [32], ALPGEN [33], MADGRAPH [34], HERWIG [35],

amongst many others). There is also code developed to support the computing

infrastructure itself, such as the CVMFS distributed caching filesystem [36], the

Frontier database caching mechanism [37], the XRootD file access software [38] and

a number of storage systems (dCache, DPM, EOS). This list of packages is by no

means exhaustive, but illustrates the range of software employed and its critical role

in almost every aspect of the programme.

Already in Run 3 LHCb will process more than 40 times the number of collisions

that it does today, and ALICE will read out Pb-Pb collisions continuously at 50 kHz.

The upgrade to the HL-LHC for Run 4 then produces a step change for ATLAS and

CMS. The beam intensity will rise substantially, giving bunch crossings where the

number of discrete proton-proton interactions (pileup) will rise to about 200, from

about 60 today. This has important consequences for the operation of the detectors

and for the performance of the reconstruction software. The two experiments will

upgrade their trigger systems to record 5-10 times as many events as they do today.

It is anticipated that HL-LHC will deliver about 300 fb-1 of data each year.

The steep rise in resources that are then required to manage this data can be

estimated from an extrapolation of the Run 2 computing model and is shown in

Figures 3 and 4.

In general, it can be said that the amount of data that experiments can collect

and process in the future will be limited by a↵ordable software and computing, and

– 7 –

CPU disk space

J. Albrect et al., A Roadmap for HEP Software and Computing R&D for the 2020s, Comput. Softw. Big Sci. (2019) 3, 7

Data volumes in HL-LHC at the multi-Exabyte scale

High Luminosity LHC

start 2027

Parallel algorithms

Multiple parts of the workload are performed concurrently to reduce the
time to achieve the solution
Several parallel algorithms are used in scientific computing
⁃ fork–join
⁃ divide and conquer
⁃ halo exchange
⁃ permutation
⁃ embarrassingly parallel
⁃ manager–worker
⁃ task dataflow

Some algorithms are better suited for one kind of physical parallelism
versus another

Maria Grazia Pia, INFN Genova 8

SIMD: single-instruction multiple data parallelism
MIMD: multiple-instruction multiple data
⁃ shared memory parallelism
⁃ distributed memory parallelism

Physical
parallelism

Emerging numerical methods in supercomputing applications:
⁃ graph traversal
⁃ finite state machines
⁃ combinational logic
⁃ statistical machine learning

HPC requires suitable software to benefit from the hardware

Chances are that you would deal with HPC and parallel computing in

Monte Carlo simulation in particle/nuclear physics

Embarrassingly parallel
⁃ Parallelism with essentially no inter-task communication
⁃ Highly partitionable workload with minimal overhead
⁃ Concurrency is trivially extracted from the workflow
⁃ Often require gathering the results at the end into a manager process

Monte Carlo transport is naturally suitable to event-level
parallelism
Methods for embarrassing parallel simulation documented
in most popular Monte Carlo particle transport codes
⁃ Threading: OpenMP threading on a single multicore computer or on a

single node of a server or cluster
⁃ Message-passing between nodes on a cluster using MPI environment
⁃ Used separately or together

Maria Grazia Pia, INFN Genova 9

Multi-threaded simulations

Maria Grazia Pia, INFN Genova 10

Min Cheol Han et al, Multi-threading performance of Geant4, MCNP6, and PHITS
Monte Carlo codes for tetrahedral-mesh geometry, 2018 Phys. Med. Biol. 63 09NT02

Ability to exploit hardware multi-threading capabilities

multithreaded Geant4 application

• master thread prepares
geometry and physics setups

• worker threads compete for the
next events to be simulated

Goal: reduce the memory footprint of parallel
applications, while preserving the linear speedup
as a function of the number of physical cores

Based on a master–worker model

an application
example

Quantum computing

Maria Grazia Pia, INFN Genova 11

IBM researchers claim Google's challenge would
take a classical computer just two and half days

The Sycamore processor can run a test computation
in 200 seconds that would take the world's biggest
supercomputers 10000 years to complete

Nature | Vol 574 | 24 OCTOBER 2019 | 505

Article

Quantum supremacy using a programmable
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1,
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1,
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1,
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1,
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1,
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1,
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13,
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor1. A
fundamental challenge is to build a high-fidelity processor capable of running quantum
algorithms in an exponentially large computational space. Here we report the use of a
processor with programmable superconducting qubits2–7 to create quantum states on
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016).
Measurements from repeated experiments sample the resulting probability
distribution, which we verify using classical simulations. Our Sycamore processor takes
about 200 seconds to sample one instance of a quantum circuit a million times—our
benchmarks currently indicate that the equivalent task for a state-of-the-art classical
supercomputer would take approximately 10,000 years. This dramatic increase in
speed compared to all known classical algorithms is an experimental realization of
quantum supremacy8–14 for this specific computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer
would be an effective tool with which to solve problems in physics
and chemistry, given that it is exponentially costly to simulate large
quantum systems with classical computers1. Realizing Feynman’s vision
poses substantial experimental and theoretical challenges. First, can
a quantum system be engineered to perform a computation in a large
enough computational (Hilbert) space and with a low enough error
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting
qubit processor, we tackle both questions. Our experiment achieves
quantum supremacy, a milestone on the path to full-scale quantum
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random
numbers (S. Aaronson, manuscript in preparation); other initial uses
for this new computational capability may include optimization16,17,
machine learning18–21, materials science and chemistry22–24. However,
realizing the full promise of quantum computing (using Shor’s algorithm
for factoring, for example) still requires technical leaps to engineer
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

1Google AI Quantum, Mountain View, CA, USA. 2Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA, USA. 3Quantum Artificial Intelligence
Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA, USA. 4Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA. 5Department of Physics, University of
California, Santa Barbara, CA, USA. 6Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Erlangen, Germany. 7Quantum Computing Institute, Oak Ridge National
Laboratory, Oak Ridge, TN, USA. 8Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. 9Scientific Computing, Oak Ridge Leadership Computing,
Oak Ridge National Laboratory, Oak Ridge, TN, USA. 10Stinger Ghaffarian Technologies Inc., Greenbelt, MD, USA. 11Institute for Advanced Simulation, Jülich Supercomputing Centre,
Forschungszentrum Jülich, Jülich, Germany. 12RWTH Aachen University, Aachen, Germany. 13Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI, USA. 14Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. *e-mail: jmartinis@google.com

Nature volume 574, pp. 505–510 (2019)

Quantum computing is a computing paradigm that exploits quantum mechanical
properties (superposition, entanglement, interference...) of matter to do calculations

In quantum circuits:
§ data = qubits
§ operations = quantum gates
§ results = measurements

5 July 2021

The Zuchongzhi quantum computer
University of Science and Technology of China/quantumcomputer.ac.cn

High Performance humans in Computing

Maria Grazia Pia, INFN Genova 12

Free
 Clip A

rt, C
C BY-SA 4.0

<http
s://

cre
ativ

eco
mmons

.org
/lice

ns

es/
by-

sa/4
.0>

, via
 Wikim

edi
a

Com
mons

Technology
Methodologies

Maria Grazia Pia, INFN Genova 13

[…] […]

[…]

Producing results

Measurements over 10 years
Publicly accessible data

Maria Grazia Pia, INFN Genova 14

Introduction to concepts and methods
📌 Pills of wisdom
📌 Food for thought
📌 Curiosity
📌 Background for further learning

Fred P. Brooks,

“No Silver Bullet - Essence and Accidents of Software Engineering”
IEEE Computer, vol. 20, no. 4, pp.10-19, April 1987

As we look to the horizon of a decade hence, we see no silver bullet. There is no single
development, in either technology or in management technique, that by itself promises even
one order-of-magnitude improvement in productivity, in reliability, in simplicity.
...

Although we see no startling breakthroughs - and indeed, I believe such to be inconsistent
with the nature of software - many encouraging innovations are under way. A disciplined,
consistent effort to develop, propagate, and exploit these innovations should indeed yield an
order-of-magnitude improvement. There is no royal road, but there is a road.

Maria Grazia Pia, INFN Genova 15

Software development methods and techniques are seldom part
of academic programs for physics and engineering degrees

• Galloping off on one's own without a prior plan
• Brute-force programming
• Uncertain design requirements, code rewrite
• Quick and dirty: code and fix later
• Lack of comments, documentation, reviews
• Reinventing the wheel

Emphasis on ingenious artistry

Inexperienced developers are unfamiliar with technologies and
methodologies that support producing quality software effectively

The results are often spotty
and difficult to duplicate

Cowboy programming

Much more than just hacking code…

Maria Grazia Pia, INFN Genova 16

Implementation

Test

Design

Configuration

management

Change
management Project

management

Environment
Requirements

Deployment

get-go, elaboration, construction, use, maintenance…

These complex disciplines include activities, generate
products and involve responsibilities in various roles

Business modeling

articulated over the
software life-cycle:

Software development methodologies
are conceptual frameworks to structure, plan and control
the process of developing the software

Highly prescriptive Adaptable to the context

Small projects Large scale projects
Wide variety

Built on best practices derived from experience

Old, risky… and most common

Maria Grazia Pia, INFN Genova 17

Cascade of phases:
the output of one is input to the next

Risk of discovering problems at a late stage of the project

Difficult to accommodate
change

Emphasis on planning

Waterfall

Variant of waterfall: V-model

Maria Grazia Pia, INFN Genova 18

Emphasis on
testing
at all levels of
software
development

System

Unit

Subsystemfunctional side

ve
rif

ica
tio

n
sid

e

Each development phase is associated with a
testing phase

Spiral development

Maria Grazia Pia, INFN Genova 19

loop in the spiral = phase of software development

Set objectives Assess and mitigate risks

Develop and test
Planning

Emphasizes
risk management

Grasp the nettle: non-linear view of the software life cycle

Barry W. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer, vol. 21 no. 5, pp. 62-72, 1988

🔴 Identify risks
🔴 Assign priorities to risks
🔴 Develop a series of prototypes for

the identified risks
🔴 Use a waterfall model for each

development loop

basis of modern
methodologies

Unified Process (UP, USDP, RUP)

Maria Grazia Pia, INFN Genova 20

Complex, but highly customizable

6 core process
workflows

3 support
workflows

Develop software iteratively
⁃ High priority features developed first

Manage requirements
⁃ Document requirements
⁃ Keep track of changes
⁃ Analyze the impact of changes before

accepting them
Use component-based architectures
⁃ Structure the system into components

Visually model software
⁃ UML (Unified Modeling Language)

Verify software quality
⁃ Test (and more)

Control changes to software
⁃ Change management system
⁃ Configuration management and tools

Iterative, incremental process, with emphasis on modeling

Best practices

Maria Grazia Pia, INFN Genova 21

Kent Beck et al. (2001)

https://agilemanifesto.org/

B. Boehm, “Get Ready for Agile Methods, With Care”, IEEE Computer, 2002,
http://dx.doi.org/10.1109/2.976920
B. Meyer, Agile!: The Good, the Hype and the Ugly, Springer, 2014
R. C. Martin, Clean Agile: Back to Basics, Prentice Hall, 2019

Emphasis on
Effective communication
among all stakeholders
Adaptive response to
change
Rapid, incremental
delivery of software

Agile Methods

https://agilemanifesto.org/
http://dx.doi.org/10.1109/2.976920

Scrum

Maria Grazia Pia, INFN Genova 22

Project management for agile (incremental) development

K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice Hall, 2001
S. Ockerman and S. Reindl, Mastering Professional Scrum: A Practitioners Guide to Overcoming
Challenges and Maximizing the Benefits of Agility, Addison-Wesley, 2019

fixed length

Starting point
for planning

Short, daily meetings to
review progress, reprioritize

review,
prioritize

Scrum master
is a facilitator

arranges daily meetings
tracks the backlog of work to be done
records decisions
measures progress against the backlog
communicates with customers and management

Maria Grazia Pia, INFN Genova 23

Many different approaches are possible
⁃ Positive and negative sides in any of them
⁃ Good or bad often depends on the context
⁃ Small/large scale project, short/long lifetime etc.

Process frameworks may (should) be adapted and extended
⁃ A good software process is tailored to the project

Grain of salt
⁃ Commercial vs. scientific environment
⁃ …let’s not forget that often we are not only the developers,

but also the customers!

How to improve the way we develop software?

Maria Grazia Pia, INFN Genova 24

Improvement requires measurement: quantify before/after

Software Capability Maturity Model
CMM, CMMI

Helpful guidance towards adopting good practices

Measure

Analyze

Change

Set of key practices
associated with each level

ISO/IEC 33001:2015
revision of ISO/IEC 15504
Software Process Improvement
and Capability Determination
(SPICE)

Capability Immaturity Model: A. Finkelstein, ACM SIGSOFT Software Eng. Notes 17 (4) 1992 pp 22–23
0 Negligent -1. Obstructive -2. Contemptuous -3. Undermining https://dl.acm.org/doi/10.1145/141874.141878

https://dl.acm.org/doi/10.1145/141874.141878

For singles

Maria Grazia Pia, INFN Genova 25

A Software Development Process for a Team of One

by Philippe Kruchten
Rational Fellow

For some, the phrase "software engineering process"
evokes an image of a huge set of dusty binders full of
policies, directives, and forms, all saturated with
administrative jargon. But, these are materials that
would probably be used only by very large companies
that deliver software at a snail's pace to government
agencies and Fortune 500 companies -- software
developed by armies of programmers aligned in giant
cubicle farms and herded by "pointy-haired
managers," like the one in the famous Dilbert cartoons
by Scott Adams.

In reality, however, a software engineering process
does not need to be such a monster. It can be as lightweight or heavyweight as the
job at hand and the size of the development organization requires. Whether the
project is a 200-developer mastodon or a short, solo gig, a good process can be
tailored to fit the job.

The purpose of a software engineering process is not to make developers' lives
miserable, or to squash creativity under massive amounts of paperwork. Its only real
purpose is to ensure that a software development organization can predictably
engineer and deliver high-quality software that meets all of the needs and
requirements of its users -- on schedule and within budget.

To understand the essence of a software engineering process, let's look at a very
simple software project developed by a team of one.

A Solo Software Project

Although Nick, a software engineer with twelve years of development experience,
prefers to work alone, he deliberately and conscientiously follows a well-defined
process. Here is a diary he kept of a one-week project that he recently completed for
Gary, an old friend of his.

The Seminal Idea (Saturday Night)

Tonight I met my friend Gary in our favorite watering hole. He's the software
development manager in a small company. As part of an effort to improve their
process efficiency and predictability, they recently went through Personal Software

The benefits of sound methodologies
are not restricted to large scale projects
or sizeable teams

What if I work at a project where I am
the only software developer?

https://doi.org/10.1184/R1/6585197.v1

https://doi.org/10.1184/R1/6585197.v1

Further learning

Maria Grazia Pia, INFN Genova 26

Get a
mentor!

Technology
No time for an extensive overview and in-depth analysis
A few highlights on key technologies and tools

Maria Grazia Pia, INFN Genova 27

Modelling Testing Tools
Dealing with legacy code

CLEAN Basic techniques of programming hygiene
“agile software craftmanship”

“If you have been a programmer for more than two or three
years, you have probably been significantly slowed down
by someone else’s messy code.” R. C. Martin, Clean Code

[Your own?]

Maria Grazia Pia, INFN Genova 28

Source code structure

Object and data structure

Design rules

Understandability

Names

Functions

Comments

Tests

Code smells

Best practices for clean code

[Visual] Modeling
Enormously helpful
⁃ Think before typing implementation code on the keyboard
⁃ Bird’s-eye view of the software (and of the hardware)
⁃ Visualize relationships among the players, which may not be easy to catch

just by looking at source code

UML (Unified Modelling Language)
⁃ Standard, lingua franca for the communication of models
⁃ Plenty of educational material and tools, from simple to very powerful
⁃ Umbrello (https://umbrello.kde.org/) …➠… Sparx Enterprise Architect™

Diagrams: class, package, component, deployment, object,
state, activity, sequence, interaction, use case...
Design patterns
⁃ elements of reusable object-oriented software

Maria Grazia Pia, INFN Genova 29

https://umbrello.kde.org/

Maria Grazia Pia, INFN Genova 30

UML class diagram
Model of the a package for the
management of cross sections data
for electron-photon interactions

Atomic data libraries are used
by all major Monte Carlo codes

for particle transport

Maria Grazia Pia, INFN Genova 31

High level requirements of a software system for
the verification of atomic data libraries

Maria Grazia Pia, INFN Genova 32

UML activity diagram
Workflow of a test for the validation
of atomic data libraries

Maria Grazia Pia, INFN Genova 33

Cloud

Local farm and
workstationsSoftware development

Production

Design Data
analysis

ArchiMate diagram of the computational environment of a
software system for the verification test of atomic data libraries

34

How do you trust the software you use?

“Testing shows the presence, not the absence, of bugs.” In other words, a program can be
proven incorrect by a test, but it cannot be proven correct. All that tests can do, after
sufficient testing effort, is allow us to deem a program to be correct enough for our purposes.

Edsger Wybe Dijkstra

Test

Maria Grazia Pia, INFN Genova 35

Levels of testing
• Unit
• Integration
• System
• Acceptance

Functional/non-functional testing
Black/white-box testing

Performance testing
Stress testing

Security testing
Configuration testing

Test harness

Test cases

Test coverage Test automation

Test planning Test frameworks

Regression testing

…etc.

No time to
cover this
discipline
in depth!

Validation test
Verification test

Maria Grazia Pia, INFN Genova 36

Test-driven development (TDD)

Write a test that fails
(before writing the code that
implements new functionality)

Improve the design
of the software

Write code that makes
the test pass

Essential: an

automated testing

environment

Suitable to small-size projects

Facilitates regression testing
Discover problems early during the software development

Limited to unit testing,
still need system testing, performance, reliability testing etc.

D. Astels, Test Driven Development: A Practical Guide, Prentice Hall, 2003

Maria Grazia Pia, INFN Genova

“If it ain’t broken, don’t fix it”
conventional wisdom

A piece of software can be broken in many ways
Functional it no longer delivers the function it is designed to perform

Maintenance it can no longer be maintained

§ Obsolete or no documentation
§ Missing tests
§ Original developers or users have left
§ Inside knowledge about the system has disappeared
§ Limited understanding of the entire system
§ Too long to turn things over to production
§ Too much time to make simple changes
§ Need for constant bug fixes
§ Big build times
§ Difficulties separating products
§ Duplicated code
§ Code smells

Warnings you are
heading into trouble

usually do not occur isolated

S. Demeyer, S. Ducasse, O. Nierstrasz,
Object Oriented Reengineering Patterns

37

Maria Grazia Pia, INFN Genova 38

In the ideal world there would be hardly any need for refactoring
In the real world most software needs to be refactored

By learning refactoring you also learn writing code that minimizes the need to be refactored

Refactoring is a disciplined technique for
improving the design of an existing code

New Functionality

Hack it in ?

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

First …
• refactor
• restructure
• reengineer

Take a loan on your software
Þ pay back via reengineering

Investment for the future
Þ paid back during maintenance

Further learning

Maria Grazia Pia, INFN Genova 39

Get a
mentor!

The End

Maria Grazia Pia, INFN Genova 40

HPC = ++

Technology
Methodology

Master them, so that
you can choose what
is most appropriate to
your research problem

This 40’ introduction only scratches the surface,
more to follow next year

Feel free to contact me for further information and for suggestions for next year

