High Performance Computing

and
High Performance humans in Computing

Maria Grazia Pia
INFN Genova

mariagrazia.pia@ge.infn.it
maria.grazia.pia@cern.ch

IAEA (Virtual) Workshop on

Computational Nuclear Science and Engineering
12-16 July 2021



MGP

@ Does not like writing bios

@ Physicist at INFN (Istituto Nazionale di Fisica Nucleare),
Section of Genova, ltaly

= Pre-covid: large fraction of time at CERN, looking forward to post-covid era
® Associate Editor of IEEE Transactions on Nuclear Science
® Moderator of arXiv Computational Physics (physics.comp-ph)

e High Energy Physics background
- CERN, FNAL, SLAC

® Monte Carlo development (Geant4) and applications,
physics data libraries validation
@ Staftistical data analysis, scientometrics, epistemology

e No Facebook, Twitter, LinkedIn, Instagram... but google me, and you will find
track of my research activity

Maria Grazia Pia, INFN Genova 2



exploit workload parallelism to manage data to achieve
achieve scalability . HP - efficiency of operation

What is HPC?

106 CPU cores

1 exabyte storage
>170 sites "

42 countrles Lab a

Physics Instltutes

Tier3 Tier2

Desktop

|1IF) PAN

IA Volta GPUs
AN



https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7494/csci.2008.9.3.47

HPC systems

@ HPC computers are networks of processors
- Very fast memories

- Low-latency, high-bandwidth communication systems
* between the processors
* between the processors and the associated memories

@ Homogeneous: only CPUs
e Hybrid: CPUs + GPUs

- GPUs can handle millions of threads simultaneously, are more
energy efficient, have faster memories, require less data transfer
- CPUs oversee the computation

e speed of operation

e parallelism to perform multiple operations
Key features of ¢ efficient use of critical components

HPC architecture ¢ glectrical power that it consumes

e reliability

e how easy to program

Maria Grazia Pia, INFN Genova



Top supercomputers

| RmaxPFLOPS

Fugaku 442.010 RIKEN, Japan Fujitsu Performance
Summit 148.600 ORNL, USA IBM PELOPS
Sierra 94.640 LLNL, USA IBM
S USA 669
Sunway TaihuLight 93.015 . b NRCPC  japan 594
Perimutter 64.590 NERSC, USA Nvidia China 564
FLOPS: floating-point operations per second
ononnes | OUpPercomputer performance

100.000.000 .._(/’J::.J; System share by application area

10.000.000 1 —

/ @ Research

1.000.000 poe’ eather an imate
(Q/_) 100.000 ';oo/v .\F/{ves:Zrch o ctmat
3 1 /....’ Energy
(LB 10.000 /II'I.. @ Benchmarking
£ 1.000 ] ‘Aerospa(?e .
% — “"'/‘/‘ Sum ] : ?::'I:T:r::‘.iounctsoerrv'ce
= 10 | ']][)F)
2 ] o
EE 0.1 |

CC BY-SA 3.0 Al.Graphics

year

' 2025



https://creativecommons.org/licenses/by-sa/3.0

Commodity clusters

@ A group of integrated computer systems
- Standalone components (COTS), capable of independent operation
- Integration network is separately developed
- Off the shelf mass storage
- Interfaces adhere to industry standards

@ Very successful
- First one in 1997, ~50% of Top 500 systems in 2005, ~ 85% today

@ Parallel programming modalities

- Throughput computing: efficiently run a large number of jobs that
are independent or require minimal communication

- Message-passing: requires a significant amount of communication
and coordination within the application

e communicating sequential processes model, exemplified by the MPI

- Shared-memory multiple-thread applications

» exemplified by the OpenMP (open multiprocessing) programming model
Maria Grazia Pia, INFN Genova 6



LHC

WLCG

LHC data are currently handled by
the Worldwide LHC Computing Grid

>170 sites

42 countries

~108 CPU cores

1 exabyte storage

2 million tasks per day

global transfer rates > 60 GB/s
>12000 physicists around the world

WLCG is a massive distributed computing infrastructure

CPU seconds by Type

| mmm Prompt Data
Non-Prompt Data
- WEm LHC MC

B HL-LHC MC

4 W Analysis

mmmmmmmmmmmmmm
NNNNNNNNNNNNNN
oooooooooooooo
NNNNNNNNNNNNNN

CMS estimated resources required H L-LHC era
J. Albrect et al., A Roadmap for HEP Software and Computing R&D for the 2020s, Comput. Softw. Big Sci. (2019) 3, 7

Data volumes in HL-LHC at the multi-Exabyte scale

5000 -

4000

@ 3000 -
a

2000 4

1000 -

Data on disk by tier

LHC experiments are exploring GPUs for

accelerated event reconstruction and simulation

/j Start 2027
Runl & 2 |_| L
Ops space
RAW
GENSIM I I I I ‘ HL-LHC PROJECT
AOD
MINIAOD
mmm USER
I High Luminosity LHC
® - reriy _
disk space -
PO e |-
5 Resource gap .-
PO i soadeasttiNNNS
CMS s
S & Lfoee




HPC requires suitable software to benefit from the hardware

Parallel algorithms

Physical e SIMD: single-instruction multiple data parallelism
parallelism e MIMD: multiple-instruction multiple data
- shared memory parallelism
- distributed memory parallelism

@ Multiple parts of the workload are performed concurrently to reduce the
time to achieve the solution

@ Several parallel algorithms are used in scientific computing
- fork—join
- divide and conquer

- halo exchange Emerging numerical methods in supercomputing applications:

- graph traversal

- P ermutathn - finite state machines

- embarrassingly parallel . combinational logic

- manager—worker - statistical machine learning
- task dataflow

@ Some algorithms are better suited for one kind of physical parallelism

versus another
Maria Grazia Pia, INFN Genova 8



Chances are that you would deal with HPC and parallel computing in

Monte Carlo simulation i particle/nuclear physics

@ Embarrassingly parallel
- Parallelism with essentially no inter-task communication
- Highly partitionable workload with minimal overhead
- Concurrency is trivially extracted from the workflow
- Often require gathering the results at the end into a manager process

@ Monte Carlo transport is naturally suitable to event-level
parallelism

@ Methods for embarrassing parallel simulation documented
iIn most popular Monte Carlo particle transport codes

- Threading: OpenMP threading on a single multicore computer or on a
single node of a server or cluster
- Message-passing between nodes on a cluster using MPI environment

- Used separately or together

Maria Grazia Pia, INFN Genova 9



Speedup factor (T, ./T,)

40

30

20

s >
N ‘ Master: Geometry and Physics configuration I
A J

reoe e s=imultithreaded Geant4 application

Multi-threaded simulations | 000

Ability to exploit hardware multi-threading capabilities | (i) | o) | (e
Goal: reduce the memory footprint of parallel ‘ cetoon | || oo
applications, while preserving the linear speedup \ )\ J
as a function of the number of physical cores L ’ ) e L ‘ )

v v

Based on a master—worker model [ e )

A

T T T T T T T T ? T ¥ T

. .
WaterBox

-‘(3'4 WItB' —a— Geant4 °
Photon L M?:ar\;l};e ’ 2 N:u(ter:mox @ M?ﬁPG i maSter th read prepares
L A - PHITS

4:~PHITS 1 geometry and physics setups
» worker threads compete for the
next events to be simulated

30
-

20 -

Speedup factor (Tsingle/TN)

an application

o g | @ example

1 n 1 " i 1 n 1 1 L 1 1 i
0 10 20 30 40 0 10 20 30 40
Number of threads Number of threads

Min Cheol Han et al, Multi-threading performance of Geant4, MCNP6, and PHITS
Monte Carlo codes for tetrahedral-mesh geometry, 2018 Phys. Med. Biol. 63 09NT02

Maria Grazia Pia, INFN Genova 10



Quantum computing is a computing paradigm that exploits quantum mechanical
properties (superposition, entanglement, interference...) of matter to do calculations

Quantum computing

Quantum supremacy using a programmable
superconducting processor

Nature volume 574, pp. 505-510 (2019)

In quantum circuits:
= data = qubits
= operations = quantum gates

= results = measurements

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute', Kunal Arya', Ryan Babbush', Dave Bacon', Joseph C. Bardin'?, Rami Barends',
Rupak Biswas®, Sergio Boixo', Fernando G. S. L. Brandao'*, David A. Buell', Brian Burkett',

Yu Chen', Zijun Chen', Ben Chiaro®, Roberto Collins', William Courtney', Andrew Dunsworth',

Edward Farhi', Brooks Foxen'®, Austin Fowler', Craig Gidney', Marissa Giustina', Rob Graff',
Keith Guerin', Steve Habegger', Matthew P. Harrigan', Michael J. Hartmann'?, Alan Ho',
Markus Hoffmann', Trent Huang', Travis S. Humble’, Sergei V. Isakov', Evan Jeffrey',

Zhang Jiang', Dvir Kafri', Kostyantyn Kechedzhi', Julian Kelly', Paul V. Klimov', Sergey Knysh',

Alexander Korotkov'®, Fedor Kostritsa', David Landhuis', Mike Lindmark’, Erik Lucero',
Dmitry Lyakh®, Salvatore Mandra®', Jarrod R. McClean', Matthew McEwen®,

Anthony Megrant', Xiao Mi', Kristel Michielsen™'2, Masoud Mohseni', Josh Mutus’',

Ofer Naaman', Matthew Neeley', Charles Neill', Murphy Yuezhen Niu', Eric Ostby',

Andre Petukhov', John C. Platt!, Chris Quintana’, Eleanor G. Rieffel’, Pedram Roushan',
Nicholas C. Rubin', Daniel Sank’, Kevin J. Satzinger', Vadim Smelyanskiy’, Kevin J. Sung'*,
Matthew D. Trevithick', Amit Vainsencher', Benjamin Villalonga™*, Theodore White',

Z. Jamie Yao', Ping Yeh', Adam Zalcman', Hartmut Neven' & John M. Martinis"**

The Sycamore processor can run a test computation
in 200 seconds that would take the world's biggest

supercomputers 10000 years to complete

IBM researchers claim Google's challenge would
take a classical computer just two and half days

Maria Grazia Pia, INFN Genova

NewScientist

China beats Google to claim the
world's most powerful quantum
computer

00ODOOC 5 July 2021

TECHNOLOGY 5 July 2021
By Matthew Sparkes

.‘; A= "

&

!
The Zuchongzhi quantum computer
University of Science and Technology of China/quantumcomputer.ac.cn




High Performance humans in Computing

Technology
Methodologies

-
Maria Grazia Pia, INFN Genova T




People Publications

® [...] collaboration ®™Ourteam ®. [...] collaboration ™ Ourteam

Average productivity

Producing results

Measurements over 10 years
Publicly accessible data

® [...] collaboration ®Ourteam

Maria Grazia Pia, INFN Genova



Fred P. Brooks,

“No Silver Bullet - Essence and Accidents of Software Engineering
IEEE Computer, vol. 20, no. 4, pp.10-19, April 1987

As we look to the horizon of a decade hence, we see no silver bullet. There is no single
development, in either technology or in management technique, that by itself promises even
one order-of-magnitude improvement in productivity, in reliability, in simplicity.

Although we see no startling breakthroughs - and indeed, I believe such to be inconsistent
with the nature of software - many encouraging innovations are under way. A disciplined,
consistent effort to develop, propagate, and exploit these innovations should indeed yield an
order-of-magnitude improvement. There is no royal road, but there is a road.

Introduction to concepts and methods

* Pills of wisdom

' Food for thought

€ Curiosity

b 4 Background for further learning

Maria Grazia Pia, INFN Genova




Software development methods and techniques are seldom part
of academic programs for physics and engineering degrees

Cowboy programming

Emphasis on ingenious artistry

« Galloping off on one's own without a prior plan
« Brute-force programming

« Uncertain design requirements, code rewrite

* Quick and dirty: code and fix later

« Lack of comments, documentation, reviews

* Reinventing the wheel

The results are often spotty = =«
and difficult to duplicate == ~

Inexperienced developers are unfamiliar with technologies and
methodologies that support producing quality software effectively



Much more than just hacking code... Implementation

management

. ion
nfiguratio . .
(r:noansgement Business modeling

These complex disciplines include activities, generate
products and involve responsibilities in various roles

@,
®
<
g
3
®
2

articulated over the
software life-cycle:

get-go, elaboration, construction, use, maintenance...

Built on best practices derived from experience

Software development methodologies
are conceptual frameworks to structure, plan and control
the process of developing the software

Adaptable to the

Highly prescriptive context
- Wide variety ‘
Small projects Large scale projects

16



Old, risky... and most common

,

Emphasis on planning | meementon

B

'

== ‘Waterfall
equirements —— W
; Cascade of phases:
S the output of one is input to the next

Difficult to accommodate
change

Verification

-—-'\I
|

.

Maintenance

RisK of discovering problems at a late stage of the project

Maria Grazia Pia, INFN Genova

17



Variant of waterfall: V-model

Concept of Acceptance
Operations Test

System
Requirements

Emphasis on
Subsystem
Requirements. | teSting
' at all levels of
software

development

Each development phase is associated with a
testing phase

Maria Grazia Pia, INFN Genova 18



Grasp the nettle: non-linear view of the software life cycle

Spiral development basis of modern

Set objectives

REVIEW

methodologies

Assess and mitigate risks

Emphasizes
risk management

Opera-
tional
protoype

analyss @® Identify risks

Requirements plan
Life-cycle plan

Development
plan

Integration
and test plan

Planning

T L
Simulations, models, benchmarks

@® Assign priorities to risks

Concep_)t of .
P = @® Develop a series of prototypes for
B )/ desen the identified risks
v:"dfm" g s ® Use a waterfall model for each
esign
vav intgration development loop

Acceptance

Service test

Develop and test

loop in the spiral = phase of software development

Barry W. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer, vol. 21 no. 5, pp. 62-72, 1988

Maria Grazia Pia, INFN Genova

19



Unified Process (ur, USDP, RUP)

Iterative, incremental process, with emphasis on modeling

6 core process
workflows l o Best practices

Disciplines | | Inception|| Elaboration Construction Transition

@ Develop software iteratively
- High priority features developed first

® Manage requirements
- Document requirements

Implementation - Keep track of changes
P - Analyze the impact of changes before

Conflauration : : . @ Use component-based architectures
& Cghange Mgmt ______ - Structure the system into components
Project Management | .| ot i | e o ol || @ V/isually model software
Envimmsnt - UML (Unified Modeling Language)
3 support Iniial || Eab #1 | Elab #2]) CoUst || o8t | SN || er L %2 ||| @ Verify software quality
workflows Iterations - Test (and more)

@ Control changes to software

. . - Change management system
Complex, but hlghly customizable - Configuration management and tools

Business Modeling
Requirements

Analysis & Design

Deployment : : N

Maria Grazia Pia, INFN Genova 20



Kent Beck et al. (2001)

Manifesto for Agile Software Development
https://agilemanifesto.org/

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there is value 1n the items on
the right, we value the items on the left more.

Emphasis on

Effective communication
among all stakeholders
Adaptive response to
change

Rapid, incremental
delivery of software

Agile Methods

1S AGWE
% = SR Q'
\%)
& /' / ScrRWM

\éJ \ foyw to implement,

? G.ILE J
?

o

/ r 3
%\S\CS €1R0 SPFCT, {%;\

SPRINTS

http://dx.doi.org/10.1109/2.976920

B. Boehm, “Get Ready for Agile Methods, With Care”, IEEE Computer, 2002,

B. Meyer, Agile!: The Good, the Hype and the Ugly, Springer, 2014
R. C. Martin, Clean Agile: Back to Basics, Prentice Hall, 2019



https://agilemanifesto.org/
http://dx.doi.org/10.1109/2.976920

SC rum Project management for agile (incremental) development

Short, daily meetings to
eview progress, reprioritize

Daily
Stand-up

Starting point

for planning
Sprint
review’ . 2-4 weeks
- fixed length
prioritize
Product Backlog Sprint Backlog [teration Potentially shippable
product increment
@ arranges daily meetings
® tracks the backlog of work to be done
S_crum _n:'aSter @ records decisions
IS a facilitator e measures progress against the backlog
® communicates with customers and management

K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice Hall, 2001
S. Ockerman and S. Reindl, Mastering Professional Scrum: A Practitioners Guide to Overcoming
Challenges and Maximizing the Benefits of Agility, Addison-Wesley, 2019



@ Many different approaches are possible
- Positive and negative sides in any of them
- Good or bad often depends on the context
- Small/large scale project, short/long lifetime etc.

@ Process frameworks may (should) be adapted and extended
- A good software process is tailored to the project

® Grain of salt
- Commercial vs. scientific environment

- ...let’s not forget that often we are not only the developers,
but also the customers!

Maria Grazia Pia, INFN Genova 23



How to improve the way we develop software?

Improvement requires measurement: quantify before/after

Software Capability Maturity Model

CMM, CMMI
/ Measure

5 Focus on process
g | improvement

ISO/IEC 33001:2015

) Level4 processes measured  revision of ISO/IEC 15504
Change f>0"a"t“a“ve'v Managed and controlled Software Process Improvement
Processes characterized for the and Capability Determination
K r>~ teval organization and is proactive. (SPICE)
Analyze Defined | foeceion feporssseston

Level 2 Processes characterized for projects
Managed and is often reactive.

| Set of key practices
Processes unpredictable, associated with each level

poorly controlled and reactive

Helpful guidance towards adopting good practices

Capability Immaturity Model: A. Finkelstein, ACM SIGSOFT Software Eng. Notes 17 (4) 1992 pp 22-23
0 Negligent -1. Obstructive -2. Contemptuous -3. Undermining https:/dl.acm.org/doi/10.1145/141874.141878



https://dl.acm.org/doi/10.1145/141874.141878

For singles

to the

Personal

. . Software
What if | work at a project where | am proéﬁss

the only software developer?

WATTS S. HUMPHREY

The benefits of sound methodologies
are not restricted to large scale projects

or sizeable teams https://doi.org/10.1184/R1/6585197.v1

Y ﬂ
mRat‘l <pal )t

llllllllllllllllllllllllllll

A Self-Improvement Process
for Software Engineers

Technical Franklin's Kite Rational Develop

b A Software Development Process for a Team of One

by Philippe Kruchten
Rational Fellow

Maria Grazia Pia, INFN Genova Watts S. Humphrey



https://doi.org/10.1184/R1/6585197.v1

Further learning

T e UNFED SoFTWARE

DEVELOPMENT .
PROCESS Clean Agile

Back to Basics

from Jerry Fitzpatrick, Tim Ottinger,
Damon Poole, and Sandro Mancuso

Robert C. Martin ;
. ¥ butions by James W, Newkirk a1 Robest S. Kess Robert C. Martin
The complese guide
to the Unified
Process from the

originel desiguers ]'ﬂ'llu

Vv

Tn'r RATIONAL
UNIFIED PROCESS
AN INTRODUCTION

Turp Eprriox

hgineering

'\ TENTHEDITION

Maria Grazia Pia, INFN Genova



Technology

@ No time for an extensive overview and in-depth analysis
@ A few highlights on key technologies and tools

Modelling | Testing Tools

Dealing with legacy code

Basic techniques of programming hygiene
“agile software craftmanship”

“If you have been a programmer for more than two or three

years, you have probably been significantly slowed down

by someone else’s messy code.” R. C. Martin, Clean Code
[Your own?]

Maria Grazia Pia, INFN Genova 27




s HALL
Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Foreword by James O. Coplien Robert C. Martin

Design rules

Keep configurable data at high levels

Prefer polymorphism to if/else or switch/case

Separate multi-threading code
Prevent over-configurability

Use dependency injection

Follow Law of Demeter A class should know only
its direct dependencies

WUnderstandability

Be consistent If you do something a certain way,
do all similar things in the same way

Use explanatory variables

Encapsulate boundary conditions. Boundary
conditions are hard to keep track of Put the
processing for them in one place

Prefer dedicated value objects to primitive type

Avoid logical dependency. Don't write methods
which works correctly depending on something
else in the same,class

Avoid negative conditionals

Names

Choose descriptive and unambiguous names
Make meaningful distinction

Use pronounceable names

Use searchable names

Replace magic numbers with named constants

Avoid encodings. Don't append prefixes or type
information

Functions
Small

Do one thing

Use descriptive names

Prefer fewer arguments

Have no side effects

Don't use flag arguments. Split method into several
independent methods that can be called from the

client without the flag
Comments

Always try to explain yourself in code

Don't be redundant

Don't add obvious noise

Don't use closing brace comments

Don't comment out code Just remove

Best practices for clean code

Use as explanation of intent

Use as clarification of code

Use as warning of consequences

Source code structure

Separate concepts vertically

Related code should appear vertically dense

Declare variables close to their usage

Dependent functions should be close

Similar functions should be close
Place functions in the downward direction

Keep lines short

Don't use horizontal alignment

Use white space to associate related things and
disassociate weakly related

Don't break indentation

Object'and data structure

Hide internal structure

Prefer data structures

Avoid hybrids structures (half object and half data)

Should be small

Do one thing

Small number of instance variables

Base class should know nothing about their
derivatives

Better to have many functions than to pass some
code into a function to select a behavior

Prefer non-static methods to static methods

Tests

One assert per test

Readable

Fast

Independent
Repeatable

Code smells

Rigidity. The software is difficult to change. A small
change causes a cascade of subsequent changes

Fragility. The software breaks in many places due
to a single change

Robert C. Martin Series




[Visual] Modeling

@ Enormously helpful
- Think before typing implementation code on the keyboard

- Bird’s-eye view of the software (and of the hardware)

- Visualize relationships among the players, which may not be easy to catch
just by looking at source code

@ UML (Unified Modelling Language)

- Standard, lingua franca for the communication of models
- Plenty of educational material and tools, from simple to very powerful
- Umbrello (https://umbrello.kde.org/) ... == .. Sparx Enterprise Architect™

@ Diagrams: class, package, component, deployment, object,
state, activity, sequence, interaction, use case...

@ Design patterns

- elements of reusable object-oriented software
Maria Grazia Pia, INFN Genova 29


https://umbrello.kde.org/

Basic data management IDatasetM DataSetDescriptor

x S . +  sourcelibrary(): std:string&
+  FindValue(): double {query}

5 ;i o x + sourceFormat(): std:string&
+  GetComponent(): IDataSetM* {query}

sourceVersion(): int

g

Composite pattern +  AddComponenti): void

y ) N y sourceDistribution(): std::string&
NumberOfComponents(): size_t {query}

GetColumn 1(): std::vector<double>& {query}

Transparent over data for PRl -
% S % physicsidentifier(): std:string&

single Z/shell and total

+
= . o
4 T B " atomicNumber(): int
data collection +  GetColumn2(): std::vector<double>& {query}
-

shellldentifier(): int

+ + 4+ +

LoadData(): bool S = :
unitColumns(): std::vector<int>

+

+  SaveData(): bool {query} . ]
Rt +  namel): std::string&

CsTabula CompositeDataSetM DataSetM

+  Build(): void
+  CrossSection(): double
+  Namel): std:string&

UML class diagram

Forxample, todeal it | Model of the a package for the
interpolator management of cross sections data

+ Calculate(): double [query] for electron-photon interactions

+  Clone(): linterpolator® {query}

G4linterpolator G4linterpolator

Atomic data libraries are used
by all major Monte Carlo codes
for particle transport

Lininterpolator LogloglInterpolator

Maria Grazia Pia, INFN Genova 30



RQO10VER Assess
intrinsic
consistency

(fr

‘om intrinsic consistency)

RQO49VER Assess
physics consistency

Verification test

(fr

‘om Physics consistency)

RQOO1VER
Compare data
across different
formats

(from Compare libraries)

RQOO2VER
Compare data
across distribution
sources

RQOB4VER Assess
consistency
RQO58VER Build
tests
<> ; 0/ (from Test build)
RQOB3VER Verify
library content
<> RQO64VER
Execute tests
(from Test execution)
RQO8B5VER Assess

——<> || differences

(from Compare libraries)

High level requirements of a software system for

RQOO3VER Assess
data evolution
across different
versions

the verification of atomic data libraries

from Compare libraries)

31



Activitylnitial

Define

observable toJ

test

wdatastores
Data libraries

(

Data library coIIection\

Identify data
libraries

|
)

Retrieve
content

\documentatio

|
) &

Convert to
common

\ format ),

P

Experimgntal data \

coll

Search
literature

Digitize =

)

Verify and
correct

K

Assess
usability

Select usable
sample

\

- ——

i

Dat#;roduction for

comparison

:’: Validation test workflow

wdatastores
Experimental data

Calculate
values

(

H Stratify

GoF test

Statistical data analysis

Categorical
data test

UML activity diagram
Workflow of a test for the validation
of atomic data libraries

@

Publication

Produce
quality plots

N

—®

ActivityFinal




Software development
Cloud

INFN Cloud

Coudstore. || —  FI Virtual machine

Data Store

@)

Supported platform

Software development environment

Production

Local farm and

workstations

O

Local production environment

I
> I Wi
~ uuse use o
. | user | ()
Design . Data Devices =
" ~
analysis
> Desktop PC/Mac > DeviceN
| o5
Local desktop : el
N | e
b O ! Pig Production environment
use \\ use siuse
N | i
T | "
RN 1'% &

Git repositoory

ArchiMate diagram of the computational environment of a
software system for the verification test of atomic data libraries

Maria Grazia Pia, INFN Genova

33



How do you trust the software you use?

“I'm just doing what the other ones are doing”

“Testing shows the presence, not the absence, of bugs.” In other words, a program can be
proven incorrect by a test, but it cannot be proven correct. All that tests can do, after
sufficient testing effort, is allow us to deem a program to be correct enough for our purposes.

Edsger Wybe Dijkstra

34



Test |Levels of testing
« Unit
 Integration
discipline * SyStem

in depth! * Acceptance

No time to
cover this

Regression testing

Performance testing

Stress testing

Configuration testing

Security testing

Verification test

Functional/non-functional testing

Validation test

Black/white-box testing

Test coverage

Test harness

Test automation

Test cases

Test planning

Test frameworks

pytest.

" @unit

3

JUnit@ googletest ...efc.



Test-driven development (TDD)

Suitable to small-size projects

Write a test that fails

(before writing the code that
implements new functionality)

Write code that makes

& w the test

Facilitates regression testing
Discover problems early during the software development

Improve the design
of the software BRSNS

Limited to unit testing,
still need system testing, performance, reliability testing etc.

D. Astels, Test Driven Development: A Practical Guide, Prentice Hall, 2003 36



conventional wisdom

“If it ain’t broken, don’t fix it”

A piece of software can be broken in many ways

m it no longer delivers the function it is designed to perform
VEMIGCIEl (-8 it can no longer be maintained

Obsolete or no documentation

Missing tests

Original developers or users have left

Inside knowledge about the system has disappeared
Limited understanding of the entire system .
Too long to turn things over to production Warnmgs you are
Too much time to make simple changes heading into trouble
Need for constant bug fixes
Big build times

Difficulties separating products
Duplicated code

Code smells S. Demeyer, S. Ducasse, O. Nierstrasz,

, , Object Oriented Reengineering Patterns
Maria Grazia Pia, INFN Genova 37

usually do not occur isolated



REeracTorING

[ New Functionality }

—Hackitn =

» duplicated code First ...
« complex conditionals * refactor
» abusive inheritance  restructure
* large classes/methods * reengineer o
WORKING
Take a loan on your software  Investment for the future EFFECTIVELY
=> pay back via reengineering = paid back during maintenance LEGACY CODE

Michael.C..E

7 Refactoring is a disciplined technique for
improving the design of an existing code

In the real world most software needs to be refactored
By learning refactoring you also leam writing code that minimizes the need to be refactored



o HALL
Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

-

Robert C. Martin

ean Coder

t for Professional Programmers

Robert C. Martin

Clean Architecture

A Craftsman’s Guide to
Software Structure and Design

Robert C. Martin

A
vv

‘T”HE UNIFIED MODELING
LANGUAGE USER GUIDE
Second Edition

GRADY BOOCH
JAMES RUMBAUGH
IVAR JACOBSON

Covers through Version 2.0 OMG UML Standard e

UML DISTILLED

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

~ ) mna
Design Patterns
Elements of Reusable
Object-Oriented Software
Erich Gamma
Richard Helm

Ralph Johnson
John Vlissides

R EFACTORING

Martin Fowler

EFFECTIVELY
WITH

LEGACY CODE

Michae! L. Feathers

SIHIS ONLLNAWOD TYNOISSTHON ATISIMNOSIAAY

Further learning




Technology
Methodology

Master them, so that
you can choose what

IS most appropriate to
your research problem

This 40’ introduction only scratches the surface,
more to follow next year

Feel free to contact me for further information and for suggestions for next year

Maria Grazia Pia, INFN Genova

40



