MACHINE LEARNING, NUCLEAR PHYSICS, AND ALGORITHM DEVELOPMENT FOR DATA ANALYSIS IN NUCLEAR RESEARCH

MICHELLE KUCHERA DAVIDSON COLLEGE

IAEA WORKSHOP ON COMPUTATIONAL NUCLEAR SCIENCE AND ENGINEERING 16 JULY 2021

DAVIDSON

MACHINE LEARNING NUCLEAR PHYSICS, AND ALGORITHM DEVELOPMENT FOR DATA ANALYSIS IN NUCLEAR RESEARCH

MICHELLE KUCHERA DAVIDSON COLLEGE

IAEA WORKSHOP ON COMPUTATIONAL NUCLEAR SCIENCE AND ENGINEERING 16 JULY 2021

DAVIDSON

MICHELLE KUCHERA

B.S., M.S. PHYSICS M.S., PH.D. COMPUTATIONAL SCIENCE

Jefferson Lab

DAVIDSON

EXPERIMENTAL DATA

J. BRADT ET. AL., NUCLEAR INSTRUMENTS AND METHODS, 2017.

CMS

EXPERIMENTAL DATA

AT-TPC

CMS

NEURON

MATHEMATICS

Neural Networks Volume 4, Issue 2, 1991, Pages 251-257

Approximation capabilities of multilayer feedforward networks

Kurt Hornik 으

Show more 🗸

😪 Share 🏾 🍠 Cite

https://doi.org/10.1016/0893-6080(91)90009-T

Get rights and content

Abstract

We show that standard multilayer feedforward networks with as few as a single hidden layer and arbitrary bounded and nonconstant activation function are universal approximators with respect to $L^p(\mu)$ performance criteria, for arbitrary finite input environment measures μ , provided only that sufficiently many hidden units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and its derivatives.

MATHEMATICS

COMPUTATIONAL GRAPH

 $\hat{f} = x_1 w_1 + x_2 w_2$

REGRESSION

SUPERVISED LEARNING

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

CLASSIFICATION

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

+ Nonlinearity

Features

AUTOMATIC DIFFERENTIATION

TensorFlow

O PyTorch

MACHINE LEARNING: LEARNING FROM DATA

Without Machine Learning

COMPUTATIONAL GRAPH

 $\hat{f} = x_1 w_1 + x_2 w_2$

MACHINE LEARNING

MACHINE LEARNING

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

CLASSIFICATION

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

+ Nonlinearity

Features

Application 1: How can experimental observables constrain theoretical models?

N. SATO, JEFFERSON LAB

$THEORY \Leftrightarrow EXPERIMENT$

Output
MIXTURE DENSITY NETWORK

Figure 2: Architecture of the kinematics-independent inverse mapper.

||p-p'||

Output Layer Interpretation:

$$p(\mathbf{t}|\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) \mathcal{N}\left(\mathbf{t}|\boldsymbol{\mu}_k(\mathbf{x}), \sigma_k^2(\mathbf{x})\right)$$

 \boldsymbol{g}

 $u_{
m V}$

 d_{v}

 $ar{d}-ar{u}$

FAST MAPPING TO THEORETICAL PARAMETERS

Bayesian Neural Networks

Training — Bayesian inference

Can we make predictions with accurate error estimates?

pMSSM parameters \rightarrow total SUSY cross section

FAST MAPPING TO THEORETICAL PARAMETERS

B.S. Kronheim, M.P. Kuchera, H.B. Prosper, A. Karbo, Bayesian neural networks for fast SUSY predictions, Physics Letters B, Volume 813, 2021, 136041, ISSN 0370-2693, https://doi.org/ 10.1016/j.physletb.2020.136041.

https://arxiv.org/abs/2009.14393

https://alpha-davidson.github.io/TensorBNN

16 million times faster

than theory codes!

2

CONVOLUTIONAL NEURAL NETWORKS

CLASSIFICATION

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

DISCRETE CONVOLUTION

Input

CONVOLUTIONAL NEURAL NETWORKS

- 1	- 1	- 1	- 1	- 1	
- 1	- 1	- 1	- 1	- 1	
5	5	5	5	5	
- 1	- 1	- 1	- 1	- 1	
- 1	- 1	- 1	- 1	- 1	

الى 1 مىلەر مىلىكى مەكتەر بىلغان ئەرىمىلەر مەكتەر مەكتەر مەكتەر مەكتەر بىلغان مەكتەر مەكتەر مەكتەر مە

723

	·· • =	
 	 	 -
 20 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
 naa ahad ka ka ka ah ah ka ah A ka ka ka ka ah		
 ·····		500055 <u>50</u> -02
		 2

7.2

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

MAX POOLING

1	1	2	4
5	6	9	3
3	2	4	4
1	2	0	7

max pool with 2x2 filters and stride 2

CONVOLUTIONAL NEURAL NETWORKS

"GoogLeNet network with all the bells and whistles"

CHOOSING AN ARCHITECTURE

- HOW MANY LAYERS?
- HOW MANY NODES PER LAYER?
 - LEARNING RATE
 - DROPOUT?
- WHAT ACTIVATION FUNCTION(S)?
- HOW MANY CONVOLUTION LAYERS?
 - FILTER SIZE?
 - STRIDE?
 - POOLING?

PRE-TRAINED MODELS

PRE-TRAINED MODELS

PRETRAINED MODELS

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

Application 2: Can we use machine learning to accurately classify events in detectors?

Metrics

Detect Lung Cancer

99% Accuracy

的你你你你你你你你你你你你你你 的内内内内内内内内内内内 **你你你你你你你你你你你你你你 你你你你你你你你你你你你你**你你 的内内内内内内内内内内内 **你你你你你你你你你你你你你你 小小小小小小小小小小 你你你你你你你你你你你你你你**

PREDICTED

Proton Not Proton

TRUE POSITIVE (TP)

FALSE POSITIVE (FP)

Proton

Not Proton

T R U E

Not Proton

Proton

TRUE POSITIVE (TP)

Proton

FALSE NEGATIVE (FN)

Not Proton

FALSE POSITIVE (FP)

TRUE NEGATIVE (TN)

PREDICTED

PERFECT MODEL

Application 2: Can we use machine learning to accurately classify events in detectors?

ACTIVE-TARGET TIME PROJECTION CHAMBER (AT-TPC)

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

EXPERIMENTAL DATA

HALL B

VGG16 ARCHITECTURE

PRE-TRAINED ON IMAGENET DATA!

AT-TPC

Experiment	Precision	Recall	F1
Experimental → Experimental	0.96	0.90	0.93
Simulated → Simulated	1.00	1.00	1.00
Simulated → Experimental	0.90	0.60	0.72

HALL B

AT-TPC

Experiment	Precision	Recall
Experimental → Experimental	0.96	0.90
Simulated → Simulated	1.00	1.00
Simulated → Experimental	0.90	0.60

HALL B

MACHINE LEARNING UNSUPERVISED LEARNING

CONVOLUTIONAL NEURAL NETWORKS

CLUSTERING - KMEANS

Goal: minimize pairwise distances between points in same cluster

Goal: maximize pairwise distances between points in different clusters

CLUSTERING — KMEANS

Input

	Output
0	10000000
0	01000000
0	00100000
0	00010000
0	00001000
2	00000100

Input

	Output
0	10000000
0	01000000
0	00100000
0	00010000
0	00001000
2	00000100

Input	A1	A2	A3	Output
1000000	0.9911	0.9869	0.0093	1000000
0100000	0.9892	0.0095	0.0124	0100000
00100000	0.0094	0.0283	0.0122	00100000
00010000	0.9840	0.9836	0.9900	00010000
0001000	0.0139	0.9904	0.0186	00001000
0000100	0.0128	0.9805	0.9868	00000100

ENCODER

ECT* TALENT SUMMER SCHOOL 02 JULY 2020

MICHELLE KUCHERA DAVIDSON COLLEGE

GENERATIVE MODELS

DECODER

DECODER

How do we know that we are providing a latent vector that represents those seen in training?

Variational Autoencoder

Encode to two outputs for each latent dimension: mean and stdev

Sample similar points in latent space, decode, and compare with regularization

https://blog.keras.io/building-autoencoders-in-keras.html

GENERATIVE MODELS

SIMULATION

GENERATIVE ADVERSARIAL NETWORKS (GANS)

SIMULATION

GENERATOR

maximize D(G(z))

Real and Fake Images

Generated Images

Update Generator

DISCRIMINATOR

minimize D(G(z))

GAN (DCGAN)

WGAN

Application 3: Can we use machine learning to simulate data?

Real

Generated

Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN), Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P. Kuchera, E. Pritchard, M. Robertson, R.R. Strauss, L. Velasco, Y. Li. accepted. 30th International Joint Conference on Artificial Intelligence (2021).

CONDITIONAL GAN

CONDITIONAL GAN

Total Distributions

Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation. John Blue, Braden Kronheim, Michelle Kuchera, Raghuram Ramanujan ACCEPTED. COMPUTATIONAL HIGH ENERGY AND NUCLEAR PHYSICS (2021)

Conditional Jet Distributions

CONDITIONAL GAN

CFAT-GAN: CONDITIONAL SIMULATION OF ELECTRON-PROTON SCATTERING EVENTS WITH VARIATE BEAM ENERGIES BY A FEATURE AUGMENTED AND TRANSFORMED GENERATIVE ADVERSARIAL NETWORK L. VELASCO, E. MCCLELLAN, N. SATO, P. AMBROZEWICZ, T. LIU, W. MELNITCHOUK, M.P. KUCHERA, YASIR ALANAZI, YAOHANG LI, 19TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), MIAMI, FL, USA, 2020, PP. 372-375, DOI: 10.1109/ICMLA51294.2020.00066.

Conditional Distributions

EXAMPLE WORKFLOW

LOGISTIC REGRESSION

EXAMPLE WORKFLOW

NEURAL NETWORKS

SUPPORT VECTOR MACHINES

ACKNOWLEDGMENTS

- Raghu Ramanujan, Meg Houck, Eleni Tsitinidi, Jose Cruz, Andrew Hoyle, Michael Robertson, Evan Pritchard, Robert Solli, John Blue, Zach Nussbaum, Ryan Strauss, Jack Taylor
- JLab/ODU Theory Center, Hall B: Nobuo Sato, Wally Melnitchouk, Yaohang Li, Yasir Alanazi, Manal Almaeen, Gagik Gavalian
- NSCL/FRIB AT-TPC Group

