MACHINE LEARNING, NUCLEAR PHYSICS, AND ALGORITHM DEVELOPMENT FOR DATA ANALYSIS IN NUCLEAR RESEARCH

MICHELLE KUCHERA DAVIDSON COLLEGE

IAEA WORKSHOP ON COMPUTATIONAL NUCLEAR SCIENCE AND ENGINEERING 16 JULY 2021

Jefferson Lab
FRIB

DAVIDSON
MACHINE LEARNING, NUCLEAR PHYSICS, AND ALGORITHM DEVELOPMENT FOR DATA ANALYSIS IN NUCLEAR RESEARCH

MICHELLE KUCHERA DAVIDSON COLLEGE

IAEA WORKSHOP ON COMPUTATIONAL NUCLEAR SCIENCE AND ENGINEERING 16 JULY 2021

Jefferson Lab
FRIB

DAVIDSON

$w_{1}=w_{1}+\eta * \frac{\partial f}{\partial q_{1}} \frac{\partial q_{1}}{\partial w_{1}}$

$J(w)=f-\hat{f}$

Jefferson Lab FRIB

FRIB

Jefferson Lab

	c charm	t	g	\bigcirc
		$0 \mathrm{~b}$	${ }_{\text {p }}^{\text {phatan }}$	
\therefore e	(1) muan	τ \tan	$\therefore Z$	n
			$\because W$	\|üw

EXPERIMENTAL DATA

BRADT ET. AL., NUCLEAR INSTRUMENTS AND METHODS, 2017

FRIB
AT-TPC

Jefferson Lab

CMS

EXPERIMENTAL DATA

Jefferson Lab

FRIB

AT-TPC
CLAS 12
CMS

NEURON

MATHEMATICS

	Neural Networks ume 4, Issue 2, 1991, Pages 251-25	
Approximation capabilities of multilayer feedforward networks		
Stshae \% Clie		
Abstract		
We show that standard multilayer feedforward networks with as few as a singhidden layer and arbitrary bounded and nonconstant activation function are		
input sets. We also give very general conditions ensuring that networks withsufficiently smooth activation functions are capable of arbitrarily accurate		

MATHEMATICS

COMPUTATIONAL GRAPH

REGRESSION

Loss function

$$
\hat{f}=x_{1} w_{1}+x_{2} w_{2} \quad J(w)=f-\hat{f}
$$

SUPERVISED LEARNING

$w_{1}=w_{1}+\eta \quad \frac{\partial f}{\partial q_{1}} \frac{\partial w_{1}}{\partial w_{1}}$

LOGISTIC REGRESSION

LOGISTIC REGRESSION

CLASSIFICATION

LOGISTIC REGRESSION

Features
Summation

+ Nonlinearity
Output

$w_{1}=w_{1}+\eta \quad \frac{\partial f}{\partial q_{1}} \frac{\partial w_{1}}{\partial w_{1}}$

AUTOMATIC DIFFERENTIATION

1F TensorFlow
 - PyTorch

MACHINE LEARNING:

LEARNING FROM DATA

COMPUTATIONAL GRAPH

MACHINE LEARNING

MACHINE LEARNING

SUPERVISED LEARNING

LOGISTIC REGRESSION

LOGISTIC REGRESSION

CLASSIFICATION

LOGISTIC REGRESSION

Features
Summation

+ Nonlinearity
Output

Application 1: How can experimental observables constrain theoretical models?

MIXTURE DENSITY NETWORK

FAST MAPPING TO THEORETICAL PARAMETERS

Bayesian Neural Networks

Training - Bayesian inference

Can we make predictions with accurate error estimates?
pMSSM parameters \rightarrow total

SUSY cross section

FAST MAPPING TO THEORETICAL PARAMETERS

CONVOLUTIONAL NEURAL NETWORKS

CLASSIFICATION

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

DISCRETE CONVOLUTION

CONVOLUTIONAL NEURAL NETWORKS

-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
5	5	5	5	5
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1

-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

MAX POOLING

1	1	2	4
5	6	9	3
3	2	4	4
1	2	0	7

max pool with 2×2 filters and stride 2

CONVOLUTIONAL NEURAL NETWORKS

"GoogLeNet network with all the bells and whistles"

CHOOSING AN ARCHITECTURE

```
            HOW MANY LAYERS?
    HOW MANY NODES PER LAYER?
    LEARNING RATE
                        DROPOUT?
WHAT ACTIVATION FUNCTION(S)?
HOW MANY CONVOLUTION LAYERS?
    FILTER SIZE?
    STRIDE?
    POOLING?
```


PRE-TRAINED MODELS

PRE-TRAINED MODELS

PRETRAINED MODELS

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

Application 2: Can we use machine learning to accurately classify events in detectors?

Metrics

Detect Lung Cancer

99\% Accuracy

anamanamanamo adadandandandand andonananonana adadanamanaman andonananananay
 adanamanamanam

PREDICTED

PREDICTED

$$
\begin{gathered}
\text { accuracy }=\frac{T P+T N}{T P+F N+F P+T N} \\
\text { precision }=\frac{T P}{T P+F P} \\
\text { recall }=\frac{T P}{T P+F N} \\
\text { F1 }=\frac{2 \cdot \text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}
\end{gathered}
$$

PREDICTED

PERFECT MODEL

Application 2: Can we use machine learning to accurately classify events in detectors?

ACTIVE-TARGET TIME PROJECTION CHAMBER (AT-TPC)

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

EXPERIMENTAL DATA

HALL B

VGG16 ARCHITECTURE

PRE-TRAINED ON IMAGENET DATA!

AT-TPC

Experiment	Precision	Recall	F1	Precision	Recall	F1
Experimental \rightarrow Experimental	0.96	0.90	0.93	0.97	0.93	0.95
Simulated \rightarrow Simulated	1.00	1.00	1.00			
Simulated \rightarrow Experimental	0.90	0.60	0.72			

AT-TPC

HALL B

Experiment	Precision	Recall	F1	Precision	Recall	F1
Experimental \rightarrow Experimental	0.96	0.90	0.93	0.97	0.93	0.95
Simulated \rightarrow Simulated	1.00	1.00	1.00		6x faster!	
Simulated \rightarrow Experimental	0.90	0.60	0.72			

MACHINE LEARNING

UNSUPERVISED LEARNING

CONVOLUTIONAL NEURAL NETWORKS

CLUSTERING - KMEANS

Goal: minimize pairwise distances between points in same cluster

$$
\min \sum_{i=1}^{k} \frac{1}{2 N} \sum_{x, y, x \neq y}^{N}(\vec{x}-\vec{y})^{2}
$$

Goal: maximize pairwise distances between points in different clusters

CLUSTERING - KMEANS

Input	Output
10000000	10000000
01000000	01000000
00100000	00100000
00010000	00010000
00001000	00001000
00000100	00000100

Input	Output
10000000	10000000
01000000	01000000
00100000	00100000
00010000	00010000
00001000	00001000
00000100	00000100

Input	A1	A2	A3	Output
10000000	0.9911	0.9869	0.0093	10000000
01000000	0.9892	0.0095	0.0124	01000000
00100000	0.0094	0.0283	0.0122	00100000
00010000	0.9840	0.9836	0.9900	00010000
00001000	0.0139	0.9904	0.0186	00001000
00000100	0.0128	0.9805	0.9868	00000100

Learning of the encoding for input 00000010

GENERATIVE MODELS

MICHELLE KUCHERA DAVIDSON COLLEGE

ECT* TALENT SUMMER SCHOOL 02 JULY 2020

DECODER

DECODER

How do we know that we are providing a latent vector that represents those seen in training?

Variational Autoencoder

Sample similar points in latent space, decode, and compare with regularization

9999999999999939999388

https://blog.keras.io/building-autoencoders-in-keras.html

GENERATIVE MODELS

GENERATIVE ADVERSARIAL NETWORKS (GANS)

WGAN

Application 3: Can we use machine learning to simulate data?

Real				Generated			
					$\begin{aligned} & \therefore \text { is } \\ & =\text { its. } \end{aligned}$		
					为		

 International Joint Conference on Artificial Intelligence (2021)

CONDITIONAL GAN

CONDITIONAL GAN

Total Distributions

CONDITIONAL GAN

Conditional Distributions

EXAMPLE WORKFLOW

EXAMPLE WORKFLOW

ACKNOWLEDGMENTS

- Raghu Ramanujan, Meg Houck, Eleni Tsitinidi, Jose Cruz, Andrew Hoyle, Michael Robertson, Evan Pritchard, Robert Solli, John Blue, Zach Nussbaum, Ryan Strauss, Jack Taylor
- JLab/ODU - Theory Center, Hall B: Nobuo Sato, Wally Melnitchouk, Yaohang Li, Yasir Alanazi, Manal Almaeen, Gagik Gavalian
- NSCL/FRIB - AT-TPC Group

Jefferson Lab
DAVIDSON

