EPFL

Introduction to nuclear reactor modelling using OpenFOAM

 École polytechnique fédérale de Lausanne

Disclaimer

C. Fiorina

2

- Focus on the use of OpenFOAM for multiphysics
 - Use of OpenFOAM as CFD tool widely covered by documentation, forums, courses, etc.
- Focus on already existing tool (GeN-Foam) as an example
 - Programming from scratch is not that difficult, but unsuited for a 75 minutes lecture
- In the slides, more material than can actually be covered in this lecture
 - Can help better understanding the slides after the lecture

EPFL Content

- General Introduction
- Introduction to the use of OpenFOAM
- Basics of GeN-Foam
- Short introduction on the use of GeN-Foam

EPFL Objective

What is it about?

- Provide you with general information, references, suggestions, terminology and lessons learnt that can facilitate your approach to the OpenFOAM world
- Provide with slides that can help you out orienting yourself if you decide to embrace the use of OpenFOAM

What is not about?

- Detailed course on the use of OpenFOAM
- Hands-on training

The IAEA-facilitated ONCORE initiative

ONCORE to support the open-source nuclear community and help addressing typical shortcomings of open-source development (scattered community, documentation, QA, loss of knowledge)

- Promote collaboration and facilitate communication (connect the community)
- Provide guidelines for code contribution (documentation, QA)
- Provide development best practices (QA)
- Preserve knowledge
 - Incl. compiling a list of open-source codes

https://www.iaea.org/topics/nuclear-power-reactors/open-source-nuclear-cod e-for-reactor-analysis-oncore

EPFL A first important outcome: list of available codes

- https://nucleus.iaea.org/sites/oncore/SitePages/List%20of%20Codes.aspx
- A vibrant community with an impressive R&D output
- ~35 codes already identified so far:
 - OpenMC
 - Raven
 - Dragon
 - MOOSE
 - Salome platform (Code_Saturne, Code_Aster)
 - TrioCFD
 - o ...
 - Several OpenFOAM-based tools

A central tool for open-source simulation EPFL Open√FOAM

- What is OpenFOAM?
 - Distributed as CFD toolbox
 - ~10k to 20k estimated users worldwide

The Open Source CFD Toolbox

A central tool for open-source simulation * EPFL Open√FOAM

- What is OpenFOAM?
 - Distributed as CFD toolbox
 - ~10k to 20k estimated users worldwide
 - OpenFOAM = Open Field Operation And Manipulation
 - Essentially a large, well organized, HPC-scalable, C++ library for the finite-volume discretization and solution of PDEs, and including several functionalities like ODE solvers, projection algorithms, and mesh search algorithms
 - Object-oriented, with a high-level "fail-safe" API

$$\frac{1}{v_i}\frac{\partial\varphi_i}{\partial t} - \Delta(D_i\varphi_i) = S$$

fvm::ddt(IV,flux i]) - fvm::laplacian(D,flux i]) = S

The Open Source CFD Toolbox

EPFL Use of OpenFOAM for multi-physics

- With some practice and commitment OpenFOAM will allow you to model pretty much everything, often in a way legacy nuclear tool can't take
- No need to start from scratch:
 - Many developers will share their work
 - Some solvers are already available online

EPFL

Introduction to OpenFOAM

 École polytechnique fédérale de Lausanne

EPFL OpenFOAM versions

- Two main versions of OpenFOAM
 - o openfoam.com
 - o openfoam.org
- And in addition, foamExtend project
- If you want to use an available solver, or take features from available solvers for your own solver, be very careful and select the right one!

EPFL Some essential features

C. Fiorina

3

- OpenFOAM runs natively on Linux systems! (but you can use MAC, or the Linux subsystem for Windows of course)
- Mesh creation, input data, running and post-processing are 4 distinct steps
 - Mesh creation
 - Input data and mesh are gathered inside a Case Folder
 - Running
 - Post-processing

EPFL Mesh creation

Don't take it lightly:

- one of the most time consuming steps
- requires good understanding of methods to decide the type of mesh and its refinement
- a bad mesh will give a bad solution (especially for CFD)
- in some unlucky cases, a bad mesh will give a non-convergent solution
- Several available free tools: blockMesh (embedded in OpenFOAM), Salome, gmsh, cfMesh, snappyHexMesh...
- Complex geometries and situations where high-quality mesh are needed may require the use of commercial software
- Make sure that the tool you chose allows you to separate your mesh into zones (called cellZones in OpenFOAM). They are necessary to assign different physical properties to different materials!

EPFL Input data

- All data (inlc. mesh) that OpenFOAM needs are collected into a Case Folder
- Inside a case folder you'll find at least 3 sub-folders
 - The folder "0", and possible other time directories, containing, for each field (viz., velocity, pressure, density):
 - Initial conditions
 - Boundary condition
 - The folder "constant" containing:
 - the mesh
 - all physical properties, gathered into "dictionaries"
 - the types of models (for instance k-epsilon or k-omega for turbulence), alse gathered into "dictionaries"
 - The folder "system" containing at least:
 - "controlDict", that gathers main simulation parameters like initial time, time steps, final time, etc.
 - "fvSchemes" that allows to set the type of discretization for various equations
 - "fvSolution" that allows mainly to set the parameters of the linear solvers

EPFL Running

- Via command line:
 - "name of the solver", such as: icoFoam, pimpleFoam or... GeN-Foam
- If parallel
 - \circ decomposePar
 - mpirun -np "number of mpi processes" "name of the solver" -parallel
 - \circ reconstructPar

Post-processing

- Typically with paraview
- OpenFOAM also has some mechanisms (not discussed here) to directly output, during or after simulation, specific quantities of interest

7

C. Fiorina

EPFL How to learn OpenFOAM

Documentation and tutorials available at:

- openfoam.com
- openfoam.org

Various forums, such as https://www.cfd-online.com/

C. Fiorina **6**

Take away messages

- Not necessarily an easy tool:
 - Make sure you are relatively familiar with CFD methods, or with numerical methods for PDEs (possibly finite volumes)
 - Make sure you are creating a mesh that is suitable for your problem
 - Don't forget that initial and boundary conditions determine your solution as much as the equations themselves
 - Go through the OpenFOAM tutorials: don't try to use complex solvers like GeN-Foam without being familiar with OpenFOAM itself
- Don't get frustrated: there is always a way out with OpenFOAM and, most likely, someone who had your same problem and will be happy to help
- Don't get discouraged: the entry barrier may seem steep, but skills you'll learn will allow you to tackle any kind of problems

Ecole Polytechnique Fédérale de Lausanne EPFL

Basics of Gen-Foam

Contribution of the

Carlo Fiorina – carlo.fiorina@epfl.ch

NNN

Objective of this set of slides:

- Overview of what GeN-Foam does
- Features of GeN-Foam that you do not typically find in standard OpenFOAM solvers
- Some terminology

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

- Introduction
- Which physics?
- <u>Multi-mesh approach</u>
- Multi-material approach
- Coupling and coupling error
- Time stepping
- <u>The source code</u>

• Introduction

- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

The GeN-Foam multi-physics solver:

- First attempt for a general OpenFOAM-based solver for reactor design and safety analysis
- Objective: complement legacy tool with more flexibility for novel technologies and complex situations
- Main focus on core/primary circuit. Not a system analyst tool!
- On GitLab (foam-for-nuclear/GeN-Foam)

Core flowering in a SFR

SFR

Assembly windows in a

The Argonaut reactor

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

Which physics?

- Neutronics
- ✓ Thermal-hydraulics (+fuel)
- Core deformations (mainly for fast-reactors)

Which physics?

- ✓ <u>Neutronics</u>
- ✓ <u>Thermal-hydraulics (+fuel)</u>
- Core deformations (mainly for fast-reactors)

Neutronics

- Point kinetics, multi-group diffusion / SP3, SN (preliminary)
- Eigenvalue or time dependent
- Parameterization in terms of local temperatures, densities and deformations
- Possibility to transport DNPs in MSRs
- Mesh can be deformed according to displacement

Single-phase thermal hydraulics

- Porous-medium
 - ✓ 3-D version of a system code, or
 - More general version of a sub-channel code
 - Allows for both coarse-mesh (sub-channel like) and fine-mesh (RANS CFD) solutions on the same mesh

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\nabla \cdot \boldsymbol{u} = 0}{\operatorname{occupied} by \text{ the fluid}}$$

$$\frac{\partial (\mathbf{x}\rho \boldsymbol{u})}{\partial t} + \nabla \cdot (\mathbf{x}\rho \boldsymbol{u} \otimes \boldsymbol{u}) = \nabla \cdot (\mu_t \nabla \boldsymbol{u}) - \nabla (\mathbf{x}p) + \mathbf{x}F_g + \mathbf{x}F_{ss}$$
Nusselt number

$$\frac{\partial (\mathbf{x}\rho e)}{\partial t} + \nabla \cdot \left(\mathbf{x}\rho \boldsymbol{u} \left(e + \frac{p}{\rho}\right)\right) = \nabla \cdot (\mathbf{x}k_t \nabla T) + F_{ss} \cdot \boldsymbol{u} + \mathbf{x}Q$$

Single-phase thermal hydraulics

Examples

2-D combined coarse/fine mesh simulation of the Fast Flux Test Facility

Two-phase thermal hydraulics

- Same approach as for single-phase thermal-hydraulics (porous-medium with sub-scale structure)
- Beyond the scope of this presentation. Further info in the EPFL PhD thesis of Stefan Radman (see reference list at the end of the presentation)

2-D coarse mesh simulation of a SFR assembly with windows

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

Multi-mesh

- Problem: different meshes for different "physics"
- Solution: multi-mesh (called multi-region in OpenFOAM)
- One mesh for each "physics"
- (Projection of fields from one mesh to the other for coupling)

Multi-mesh: in practice

Case folder:

Case L 0 L U L T L ... L constant L turbulenceProperties

L ...

L system

- L fvSolution
- L fvSchemes
- L controDict

```
Case
 L
    0
         neutroRegion
              Flux
      L
         fluidRegion
              U
         thermoMechanicalRegion
 L
    constant
         neutroRegion
         fluidRegion
         thermoMechanicalRegion
          • • •
    system
         neutroRegion
         fluidRegion
         thermoMechanicalRegion
          • • •
```

٠

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

Multi-material

- Problem: one mesh, multiple material
- Solutions: cellZones
 - associate a label to each cell in polymesh/cellZones

```
FoamFile
   version
           2.0;
   format ascii;
   class regIOobject;
   location "constant/fluid/polyMesh";
   object cellZones;
        * * * * * * * * * * * * * * * * * *
7
controlRod
   type cellZone;
cellLabels
              List<label>
5994
0
1
2
```

Multi-material

 Then, for each physics, an input file (dictionary) is used that associates each of these labels with a set of properties. For instance in /constant/neutroRegion/nuclearData

```
zones
```

```
controlRod
```

```
fuelFraction 1.000000e+00 ;
IV nonuniform List<scalar> 1 (8.477550e-07 );
D nonuniform List<scalar> 1 (1.562700e-02 );
nuSigmaEff nonuniform List<scalar> 1 (0.000000e+00 );
sigmaPow nonuniform List<scalar> 1 (0.000000e+00 );
scatteringMatrix 1 1 (
( 2.509070e+01 )
);
```

Multi-material: in practice

How to create a multi-zone mesh:

- All mesh generators allows for the option to generate "cellZones"
- NB: cellZones are called in different ways (physical volumes in gmsh, groups in Salome, etc)
- The mesh conversion tool (e.g., gmshToFoam) takes care of converting the format
- Case folder:
 - Polymesh folder including cellZones
 - Dictionaries that associates a cellZone to some value of a field or property

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

Coupling and coupling error

- Two main options
 - Matrix-coupled solution:
 - All equations in the same matrix
 - Straightforward, no iterations needed, can be faster
 - Often difficult to precondition

Segregated solution (operator splitting):

- One matrix for each equation + iteration
- Easier preconditioning and optimal choice of solution method
- No need to solve all physics at each coupling/time step
- Possibility to combine the two
 - e.g., segregated for each mesh, coupled for some physics (multi-group diffusion)

Coupling and coupling error

- Coupled solution not (fully) available in OpenFOAM
- Segregated solution employed for GeN-Foam

Coupling and coupling error: coupling strategy (single phase)

- Initial residuals evaluated before solving each iteration
- Solve only if initial residuals higher than desired residuals for each physics
- Keep iterating till initial residual for each physics is lower than the desired coupling residual

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

Time stepping: choice of time step

- Fixed or adaptive
- Two possibilities for adaptive time step:
 - Based on previous iteration
 - Based on current iteration, more stable, more time consuming
- Criteria for adaptive time step:
 - Based on stability criteria: e.g. CFL condition
 - Based on "physics based" criteria: e.g., max power variation
 - Based on rigorous mathematical approaches: e.g., in high-order time discretization schemes, based on the difference between solutions for two different orders

In GeN-Foam:

 Fixed or adaptive; adaptive based on CFL + max power variation, using values at previous time step; necessary to guess first one GeN-Foam

- Introduction
- Which physics?
- Multi-mesh approach
- Multi-material approach
- Coupling and coupling error
- Time stepping
- The source code

The GeN-Foam multi-physics solver

- All sub-solvers are organized into C++ classes
 - Easier to understand its coding
 - Possible to easily extract sub-solvers for use in other solvers
 - You have complete freedom to freely use and modify
 - (Does not mean that copyright does not exists: acknowledgment of previous the work of other authors is always good practice and consistent with ethics in open-source development)

What is a C++ class

- C++ is object oriented
- Object-oriented roughly means that you can organize you code into classes
- Classes are a set of data, and functions that operate on those data
- For instance, in GeN-Foam, classes for:
 - neutronics •
 - cross-sections
 - thermal-hydraulics
 - thermal-mechanics
 - other "functional classes" e.g. for handling multi-physics simulations
- For instance, the neutronics class contains:
 - neutronics quantities, such as keff, power field, etc.
 - functions that manipulate these quantities

29

What is a C++ class

30

- Classes can have *derived classes*, i.e., classes that can "see"
 everything in the original class, but that contains additional data and functions
- In GeN-Foam, this is used to "specialize" solver classes into sub-solvers
- For instance, from the neutronic class, we derive classes for:
 - diffusion
 - Sp3
 - SN
 - point-kinetics
- For instance, the "diffusion" derived class contains:
 - all data and functions from the neutronics class
 - additional data (e.g., multi-group fluxes)
 - additional functions, the most important being the function that solves for the fluxes at every time step

Thank you for your attention

Carlo Fiorina <u>carlo.fiorina@epfl.ch</u>

General

- C. Fiorina, I. Clifford, M. Aufiero, and K. Mikityuk, "GeN-Foam: A novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors," Nuclear Engineering and Design, vol. 294, 2015, doi: 10.1016/j.nucengdes.2015.05.035.
- Intro (theory and practice): <u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/master/Documentation</u>
- Wiki documentation: <u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/wikis/home</u>
- Commented tutorials: <u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/master/Tutorials</u>

Neutronics

- Diffusion
 - C. Fiorina, N. Kerkar, K. Mikityuk, P. Rubiolo, and A. Pautz, "Development and verification of the neutron diffusion solver for the GeN-Foam multi-physics platform," Annals of Nuclear Energy, vol. 96, 2016, doi: 10.1016/j.anucene.2016.05.023.
- o SP3
 - C. Fiorina, M. Hursin, and A. Pautz, "Extension of the GeN-Foam neutronic solver to SP3 analysis and application to the CROCUS experimental reactor," Annals of Nuclear Energy, vol. 101, pp. 419–428, Mar. 2017, doi: 10.1016/j.anucene.2016.11.042.

• SN

- C. Fiorina, S. Radman, M.-Z. Koc, and A. Pautz, "Detailed modelling of the expansion reactivity feedback in fast reactors using OpenFoam," M&C International Conference, Portland (US), 2019.
- Point kinetics
 - S. Radman, "A coarse-mesh methodology for the analysis of one and two-phase nuclear reactor thermal-hydraulics in a multi-physics context," 2021.
 - A.S. Mattioli et al., "Derivation and implementation in OpenFOAM of a point-kinetics model for Molten Salt Reactors". Submitted to the ANS winter meeting 2021.

Single-phase thermal-hydraulics

- C. Fiorina, I. Clifford, M. Aufiero, and K. Mikityuk, "GeN-Foam: A novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors," Nuclear Engineering and Design, vol. 294, 2015, doi: 10.1016/j.nucengdes.2015.05.035.
- S. Radman, "A coarse-mesh methodology for the analysis of one and two-phase nuclear reactor thermal-hydraulics in a multi-physics context," PhD Thesis, EPFL, Switzerland 2021,

https://memento.epfl.ch/event/a-coarse-mesh-methodology-for-the-analysis-of-on-2/ .

 S. Radman et al., "A coarse-mesh methodology for modelling of single-phase thermal-hydraulics of ESFR innovative assembly design," Nuclear Engineering and Design 355, 2019.

Two-phase thermal-hydraulics

 S. Radman, "A coarse-mesh methodology for the analysis of one and two-phase nuclear reactor thermal-hydraulics in a multi-physics context," PhD Thesis, EPFL, Switzerland 2021,

https://memento.epfl.ch/event/a-coarse-mesh-methodology-for-the-analysis-of-on-2/ .

- S. Radman, C. Fiorina, and A. Pautz, "Development of a Novel Two-Phase Flow Solver for Nuclear Reactor Analysis: Algorithms, Verification and Implementation in OpenFOAM," Submitted to Nuclear Engineering and Design, 2021.
- S. Radman, C. Fiorina, and A. Pautz, "Development of a Novel Two-Phase Flow Solver for NuclearReactor Analysis: Validation against Sodium Boiling Experiments," Nuclear Engineering and Design, Submitted, 2021.

Mesh deformation

- C. Fiorina, I. Clifford, M. Aufiero, and K. Mikityuk, "GeN-Foam: A novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors," Nuclear Engineering and Design, vol. 294, 2015, doi: 10.1016/j.nucengdes.2015.05.035.
- C. Fiorina, S. Radman, M.-Z. Koc, and A. Pautz, "Detailed modelling of the expansion reactivity feedback in fast reactors using OpenFoam," 2019.

Ecole Polytechnique Fédérale de Lausanne EPFL

A very short introduction to using GeN-Foam

Carlo Fiorina – carlo.fiorina@epfl.ch

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

How to get it?

Free, online at

https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/develop

- "Develop" branch or "Master" branch
- Either
 - git clone

https://gitlab.com/foam-for-nuclear/GeN-Foam.git"

or, simply download

How to get it?

Branch		Download	d Clone
GitLab Projects 🛩 Grou	ps 🗸 More 🖌	➡ ➤ Search or jump to	
G GeN-Foam	foam-for-noclear project > GeN-Foam > Repository		
1 Project overview	develop	✓ History Find file	Web IDE 🗸 Clone 🗸
Repository			
Files	Update solvePointKineticsLiquidFuel. foam-for-nuclear project authored 22	H hours ago	0a05c5b4 🖺
Commits			
Branches	Name	Last commit	Last update
Tags	Documentation	Deleted howTo file. Created README file in	9 months ago
Contributors	🖿 GeN-Foam	Update solvePointKineticsLiquidFuel.H	22 hours ago
Graph	Tools	Resturetcured Tools folder	8 months ago
Compare	Tutorials	Corrected bug in the modifiedEngel fluid-str	4 weeks ago
Locked Files	🚸 .gitignore	Added FFS library from my two-phase work t	1 year ago
	_		

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

How to install it?

- Download OpenFOAM at
 - o <u>https://www.openfoam.com/download/</u>
 - (Typically the latest release, but it may take us some few weeks to update to a new release each time)
- Install OpenFOAM and prepare the environment
 - o <u>https://www.openfoam.com/download/installation.php</u>
- Download GeN-Foam
- Enter the GeN-Foam/GeN-Foam folder and run:
 - Allwclean
 - *Allwmake* (or *Allwmake -j*, to compile in parallel)
- Testing enter any tutorial and run:
 - Allrun

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

What's inside?

levelop v GeN-Foam / 🕂 v	History	Find file	Web IDE	•	<u>ل</u> ب	lone 🗸
Update solvePointKineticsLiquidFuel.H					0a05c5b4	G
foam-for-nuclear project authored 22 hours ago						

Name	Last commit	Last update
Documentation	Deleted howTo file. Created README file in	9 months ago
GeN-Foam	Update solvePointKineticsLiquidFuel.H	22 hours ago
	Resturetcured Tools folder	8 months ago
Tutorials	Corrected bug in the modifiedEngel fluid-str	4 weeks ago
♦ .gitignore	Added FFS library from my two-phase work t	1 year ago
LICENSE	Add LICENSE file	3 months ago
README	Update README	3 months ago

README file often present to describe what's in a subfolder

What's inside? Tools

- Example of a mesh creation with gmsh
- Script to convert an output of Serpent into an input for GeN-Foam

What's inside? Documentation

Update README in GeN-Foam/Do foam-for-nuclear project authored		e1c958a9 🕻
Name	Last commit	Last update
theory_papers	Corrected bug in pressure solution (it was n	1 year ago
IntroToGeN-Foam_practice.pdf	Upload New File	5 months ago
IntroToGeN-Foam_theory.pdf	Upload New File	5 months ago
PopenFOAMUserGuide-A4.pdf	improved documentation	1 year ago
README	Update README in GeN-Foam/Documentati	5 months ago

This folder contains reference papers, the standard OpenFOAM user guide, an introductory presentation about the logi please refer to the wiki of the citLab repository.

Wiki

G GeN-Foam	foam-for-nuclear project > GeN-Foam > Wiki > Home		
 Project information Proposition 	Last edited by 🙀 foam-for-nuclear project 10 months ago	Page history	New page
RepositoryIssues	Home		Ø
In Merge requests 1 ≡ Requirements 1	This wiki provides the basic documentation for the GeN-Foam multi-physics code, including:		
CI/CD	 Introduction to GeN-Foam GeN-Foam Theory 		
♥ Security & Compliance● Deployments	 Source code Compiling GeN-Foam Pre-processing 		
Monitor	 Pre-processing Running GeN-Foam Post-processing 		
InfrastructurePackages & Registries	Tutorials Miscellanea		
Analytics	Tips and tricks		
Settings			

<u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/wikis/home</u>

What's inside? Source code

develop

GeN-Foam / GeN-Foam / 🕂 🗸

Update solvePointKineticsLiquidFuel.H

foam-for-nuclear project authored 23 hours ago

Name	Last commit	Last update
🖿 Make	Updated GeN-Faom to OpenFOAM v2006, w	6 months ago
Classes	Update solvePointKineticsLiquidFuel.H	23 hours ago
🖿 include	Updated GeN-Faom to OpenFOAM v2006, w	6 months ago
🖿 main	Added optional specification of a Function1	1 month ago
🕒 Allwclean	Added 1D tutorial case on boiling, uncouple	9 months ago
Allwmake	Updated GeN-Foam with the latest FFSEuler	1 month ago

- "Classes" contains all the physics
- "main" contains what glues them together
- "include" are folders that mainly contain chunks of code that perform specific tasks and that are included (#include) in the code

https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/develop/GeN-Foam

Ĝ

0a05c5b4

What's inside? Tutorials

develop	~	GeN-Foam / Tutorials / 🕂 🗸	Lock	History	Find file	Web IDE	•	¥ •	Clone 🗸

Corrected bug in the modifiedEngel fluid-structure drag model (thanks to...

Stefan Radman authored 4 weeks ago

Name	Last commit	Last update
<i></i>		
D_HX	Corrected bug in the modifiedEngel fluid-str	4 weeks ago
D_boiling	Updated GeN-Foam with the latest FFSEuler	1 month ago
D_2D_FFTF	updated regression test	1 month ago
D_2D_MSFR	Added expected keff to Allrun.	2 months ago
2D_cavityBoussinesq	Added optional specification of a Function1	1 month ago
2D_onePhaseAndPointKineticsCo	Added novel feature to the pointKinetics mo	1 month ago
2D_voidMotionNoPhaseChange	Updated GeN-Foam with the latest FFSEuler	3 months ago

- Cover essentially all functionalities of GeN-Foam
- They include a README file, an Allrun file (sometimes Allrun_parallel), an Allclean file, and some extensively commented inputs

Ĝ

424e122b

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

- <u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/develop/Tutorials/</u>
 <u>2D_onePhaseAndPointKineticsCoupling</u>
- Understanding the tutorial:
 - wiki or README file
 - Case folder and Allrun file
 - Run it and use paraview to see what happens

Start from the README file

(https://gitlab.com/foam-for-nuclear/GeN-Foam/-/blob/develop/Tutorials/2

<u>D_onePhaseAndPointKineticsCoupling/README</u>)

DESCRIPTION

simplified test case for the pointKinetics neutronics model ... 2-D square domain ... single cellZone ... coolant flows from bottom to top. Cross-sections arbitrarily chosen in 2 groups.

They are used to obtain the power shape.

Two transients:

- 0.2\$ reactivity insertion
- like the transient above, but including driveline expansion
- Do an Allrun and plot some results

- Look at the case folder
 - O folder with three subfolder containing the fields for each physics
 - constant folder with 3 subfolders
 - 3 meshes (*polyMesh* folders)
 - 3 sets of dictionaries
 - *system* folder with:
 - 3 subfolders with dedicated *fvScheme* and *fvSolution* for each physics
 - 1 controlDict
 - 1 common *fvSolution* with some multi-physics controls

- Look at the dictionaries
 - All of the dictionaries are extensively commented in at least one of the tutorials
 - Which tutorial to look at for every dictionary? Look in the wiki/pre-preprocessing <u>https://gitlab.com/foam-for-nuclear/GeN-Fo</u> <u>am/-/wikis/Pre-processing</u>

 In our case, the tutorial is mainly dedicated to the point kinetics model. Look at constant/neutroRegion/nuclearData <u>https://gitlab.com/foam-for-nuclear/GeN-Fo</u> <u>am/-/blob/master/Tutorials/2D_onePhaseAn</u> <u>dPointKineticsCoupling/rootCase/constant/n</u> <u>eutroRegion/nuclearData</u>

Look at the Allrun file

```
cases="steadyState transientNoDriveline transientWithDriveline"
setSteadyState()
    foamDictionary $2/constant/neutroRegion/neutronicsProperties -entry model -set diffusionNeutronics
    foamDictionary $2/constant/neutroRegion/neutronicsProperties -entry eigenvalueNeutronics -set true
    foamDictionary $2/system/controlDict -entry startTime -set 0
    foamDictionary $2/system/controlDict -entry endTime -set 100
    foamDictionary $2/system/controlDict -entry deltaT -set 1
setTransientNoDriveline()
{
    foamDictionary $2/constant/neutroRegion/neutronicsProperties -entry model -set pointKinetics
    foamDictionary $2/constant/neutroRegion/neutronicsProperties -entry eigenvalueNeutronics -set
false
    foamDictionary $2/system/controlDict -entry startTime -set 100
    foamDictionary $2/system/controlDict -entry endTime -set 200
    foamDictionary $2/system/controlDict -entry deltaT -set 1e-6
    foamDictionary $2/constant/neutroRegion/nuclearData -entry absoluteDrivelineExpansionCoeff -set
0.0
```

••

- Run the tutorial -> ./Allrun
- Check the results:
 - Choose a folder: steadyState, transientNoDriveline, transientWithDriveline
 - Use:
 - ./log.GeN-Foam: standard OpenFOAM log
 - ./GeN-Foam.dat: quick overview of time behavior of main quantities (power, keff, min/max/average fuel and clad temp.)
 - ./constant/neutroRegion/reactorState for keff
 - in some tutorials, a python script to extract info from log file
 - paraFoam -region regionName (where regionName is set to fluidRegion, neutroRegion, or thermoMechanicalRegion)

python script (extract data from log)

paraview (export animation + ffmpeg)

- How to get it?
- How to install it?
- What's inside?
- An example
- Some other tutorials

$1D_HX$

• Example on how to set up a heat exchanger

1D_boiling

 Example of two-phase simulation. 1D channel with a pressure-driven flow of liquid sodium, with power source turned on at time 0, eventually leading to boiling. After a certain time the power is turned off

2D_cavityBoussinesq

 Example of how to use of the Boussinesq approximation for buoyancy based on the standard buoyancy-driven cavity

2D_voidMotionNoPhaseChange

Simple two-phase case without mass transfer between phases

Godiva_SN

• Example of a discrete ordinate calculation of Godiva

$2D_FFTF$

Simplified, 2-D model of the FFTF. Simulation of a ULOF

2D_MSFR

• Simplified, 2-D model of the MSFR

3D_SmallESFR

- Slightly smaller version of the European Sodium Fast Reactor
- Example of a 3D full multi-physics simulation, including core deformation

Thank you for your attention

Carlo Fiorina <u>carlo.fiorina@epfl.ch</u>

Stay tuned: more from the EPFL

- OFFBEAT: OpenFOAM Fuel BEhavior Analysis Tool
 - Advanced multi-dimensional tool co-developed by the EPFL and the PSI
 - Currently under development
 - First release planned for 2022

Stay tuned

- IAEA Technical Meeting on the Development and Application of Open-Source Modelling and Simulation Tools for Nuclear Reactors (27-29 October 2021)
 - o <u>https://conferences.iaea.org/event/247/</u>
 - Promote and facilitate the exchange of information
 - Present and discuss the current status of research and development
 - Discuss the available open-source tools and their state of development;
 - Discuss the value and drawbacks of the open-source model
 - Provide forum for sharing user and developer experiences
 - Discuss open-source code project best practices,
 - Discuss the opportunities provided by the use of open-source codes for education and training
 - Discuss and identify R&D needs and gaps

Stay tuned

- PHYSOR 2022
 - o <u>https://www.ans.org/meetings/physor2022/</u>
 - May 15–20, 2022
 - Pittsburgh, PA
 - IAEA <u>special session</u> of use and development of open-source code
 - Full day <u>workshop</u> on the use OpenFOAM for nuclear reactor analysis