Nuclear data for high-fidelity, high performance reactor modelling and simulation

Benoit Forget

Massachusetts Institute of Technology Department of Nuclear Science and Engineering <u>bforget@mit.edu</u>

IAEA Workshop on Computational Nuclear Science and Engineering July 12-16, 2021

About Me

- Joined MIT in 2008
- Professor and Associate Department Head of Nuclear Science and Engineering
- Founded the Computational Reactor Physics Group
 - Major highlights:
 - OpenMC, an open source Monte Carlo code (lead developer Paul Romano)
 - OpenMOC, an open source Method of Characteristic transport code
 - BEAVRS benchmark, full core PWR with first 2 cycles of flux core mapping data

Our goal

- One of our primary goals has been the development of high-fidelity neutron transport methods for **full core nuclear reactor simulations**
 - Leverage high performance computing
 - Improve data representation
 - Reduce memory footprint
 - Develop novel algorithms for improved efficiency

Many of the roadblocks and bottlenecks identified for improving performance were tied to nuclear data

Outline

- Part I: Nuclear data for high-fidelity Monte Carlo simulations
 - Nuclear Data Requirements
 - Nuclear Data Options
 - Limitations and Opportunities
- Part II: Generating high-fidelity nuclear data for deterministic calculations
 - Transport cross-section
 - Equivalence Factors
 - Limitations and Opportunities

Assumptions

- When preparing this talk, I had to assume some level of knowledge, I thus assumed that most of you knew something about
 - Nuclear cross-sections
 - Neutron slowing down
 - Criticality
 - Multigroup cross-sections
 - Transport equation
 - Diffusion equation

Part I: Nuclear data for high-fidelity Monte Carlo simulations

The Big Picture

Oak Ridge National Laboratory, CASL News Release, 2014.

Current state-of-the-art

• Current methodologies rely on many-levels of approximation that have been extensively validated against experiments and operating nuclear fleet

- > Currently licensed methods are highly accurate for the current fleet of reactors
- > Most experiments were performed in the 60's and 70's

- New reactors promise much higher levels of heterogeneities.
- Experimental facilities in nuclear are increasingly costly and require very long lead times.

High-fidelity simulations are necessary to reduce the need for costly experiments for future nuclear reactor technologies

Why do we need high-fidelity Monte Carlo?

- Monte Carlo methods "faithfully" track neutrons through their lifetime
 - > High-fidelity representation of the nuclear data
 - > High-fidelity representation of the geometry
 - High-fidelity representation of the fission and scattering source distribution

10 orders of magnitude in Energy

ATR Geometry in OpenMC

Multiphysics applications

- High-fidelity simulations beyond benchmarking require at the very least thermohydraulic feedback
 - Example of 3D 1/4 PWR between OpenMC and subchannel
 - Power distribution shifts radially and axially based on temperature feedback

Data Requirements (LWR Example)

- Our goal is to predict the power in every single fuel pellet as a function of time
 - > PWR has ~20,000,000 fuel pellets
 - Every pellet has a different average temperature
 - > Every pellet has a **unique temperature profile**
 - ▶ Fuel transmutes over its lifetime (each pellet resides ~5 years in the core)
 - We must track ~6 different reactions that can occur in the fuel.
 - We must follow ~300 nuclides being consumed and produced in the fuel.

Each event requires accessing 100's of GBs of nuclear data! Each time step requires ~3-5TB of data to be stored!

Detailed knowledge enables better fuel utilization, improves understanding of safety margins that can lead to a reduction of conservatism and improves predictability of the system.

Temperature dependence of data

- Monte Carlo simulations are commonly used as reference calculations at fixed temperatures
- Cross sections are pre-generated at fixed temperatures using the BROADR (SIGMA1 algorithm) module of NJOY
- Nuclear data is commonly represented (in the resonance range) using models representative of the R-matrix theory (SLBW, MLBW, RM, ...)
 - > Requires only a few parameters per resonance ($E_0, \Gamma, \Gamma_n, \Gamma_f \dots$)
 - However, SIGMA1 requires a linearization of the data to perform the convolution integral

$$v\sigma(v,T) = \int d\mathbf{V}|\mathbf{v} - \mathbf{V}|\sigma_0(|\mathbf{v} - \mathbf{V}|)P(\mathbf{V},T)$$

Nuclear Data Reconstruction

- Every isotope has its own energy grid for each temperature
 - ▶ Requires a binary search over 1000's 100,000's of points

Isotope 2	E1	$E_2 \longrightarrow E_3 \longrightarrow E_4 \dots$
Total	$\sigma_t(E_1)$	$\sigma_{t}(E_{2}) \sigma_{t}(E_{3}) \sigma_{t}(E_{4}) \dots$
Capture	$\sigma_{\gamma}^{}$ (E ₁)	$\sigma_{\gamma}(\mathbf{E}_2) = \sigma_{\gamma}(\mathbf{E}_3) = \sigma_{\gamma}(\mathbf{E}_4) \dots$
Scattering	$\sigma_n^{}(E_1^{})$	$\sigma_n(E_2)$ $\sigma_n(E_3)$ $\sigma_n(E_4)$

- Simple algorithmic fixes
 - > Unionized grid over all temperatures and isotopes
 - Global or local (cell-based)
 - Serpent uses a global unionized grid
 - Hash table to accelerate search
 - MCNP6 and OpenMC use a hash table

The further you reach for data, the slower your code becomes!

Options in the Resolved Resonance Range

SIGMA1

- Linearize data and solve Solbrig kernel analytically over an energy band
- Some are exploring off-loading this operation to GPU
- Stochastic Mixing
 - Randomly sample between bounding temperatures to mimic interpolation
 - Requires temperature spacings on the order of 10-50K for good accuracy
- Kernel Reconstruction
 - Reconstruct the Solbrig kernel effect using ~10 temperatures from which to randomly sample. Weights are determined analytically through an error minimization process.

Ducru et al, JCP, 2017

Options in the Resolved Resonance Range

- Gauss-Hermite Quadrature
 - > Replace convolution integral by a Gauss-Hermite quadrature
- Polynomial fitting (e.g. MCNP)
 - > High order fit across many temperatures
- Target Motion Sampling (e.g. SERPENT)
 - Sample target velocity at collision site and apply rejection sampling
- Windowed Multipole (e.g. OpenMC)
 - Transform the resonance parameters to an equivalent representation in complex space and perform convolution integral analytically
 - For performance benefits, broadening only performed over a surrounding energy window

 $\int_{-\infty}^{\infty} dz \, e^{-z^2} f(z) \approx \sum_{k=1}^{N} w_k f(z_k)$

 $\sigma_{\gamma}(T, E_g) \approx \sum_{i=1}^{N} \frac{a_{g,i}}{T^{i/2}} + \sum_{i=1}^{N} b_{g,i} T^{i/2} + c_g$

Multipole Formalism

- Developed by R.Hwang in 1987
 - Recognized that R-matrix formulation yielded a meromorphic function on which a partial fraction decomposition could be performed
 - > (E,Γ) real parameters are transformed into (p,r) complex parameters

$$\sigma = \frac{1}{u^2} \sum_{j} \Re\left[\frac{r_j}{p_j - u}\right]$$

And the convolution integral yields

$$\sigma(u,T) = \mathfrak{D}\mathfrak{B}_{T_0}^T \left[\sigma(u,T_0) \right] = \frac{1}{2u^2\sqrt{\xi}} \sum_j \mathfrak{R} \left[ir_j \sqrt{\pi} W(z_j^0) - \frac{r_j}{\sqrt{\pi}} C\left(\frac{p_j}{\sqrt{\xi}}, \frac{u}{2\sqrt{\xi}}\right) \right]$$

Josey and Ducru, JCP, 2016

Windowed multipole method

- Key observation was made that Doppler broadening effects are local
 - Far away resonances contribute to the local cross section but they exhibit little to no temperature dependence
- Windowed multipole method creates a system of inner windows and pointers to minimize the number of Faddeeva function evaluations
 - > Far away resonances are fitted to a low order polynomial

$$\sigma(E) = \frac{1}{E} \sum_{j \in \mathcal{W}(E)} \operatorname{Re}\left[\frac{-ir_j}{p_j - \sqrt{E}}\right] + \sum_{n \ge -2}^{N} a_n (\sqrt{E})^n$$

Options in the Resolved Resonance Range

• SIGMA1

- Stochastic Mixing
- Kernel Reconstruction
- Gauss-Hermite Quadrature
- Polynomial fitting
- Target Motion Sampling
- Windowed Multipole

Method	Memory*	Efficiency*
Single T ACE	1	1
Stochastic Mixing / Interpolation	~100	~1.5-2
Kernel Reconstruction	~10	~2
Gauss-Hermite Quadrature	~1	~10-15
Polynomial Fitting	~20	~1.1-1.3
Target Motion Sampling	~2	~4-10
Windowed Multipole	~0.5-0.7	~1.0-1.2

* Estimated by the lecturer (lower is better)

Rest of the Energy Range

- Thermal scattering
 - > Tables of (E, E', μ , T) with interpolation
 - PDF/CDF with temperature polynomial fitting
 - Rejection Sampling
- Unresolved Resonance Range
 - Equiprobable tables or surfaces
 - Multiple independent URR representations
- Threshold reactions, depletion tallies, ...
 - \succ (n,2n), (n,3n), (n,p), (n,α), ...
- Secondary distributions
 - > Multiple scattering laws, multiple formats, ...

Outgoing Energy distribution Incoherent Inelastic Scattering for H in H2O at 293K (from NJOY)

Limitations

- Resonance upscattering is not always included by default
 - Observed in actinides with large low energy scattering resonances (<1000 eV)
 - Requires a rejection sampling algorithm or thermal scattering process that slows down computations
 - Impacts reactivity coefficients in LWRs by as much as 10%
- Nuclear data evaluations sometimes hinder the use and development of new formats
- More accurate data representation can significantly hinder performance but may have little impact on your problem of interest
 - Anisotropy of fission neutrons
 - Detailed outgoing angular distributions
- Coupled simulations and transients are still very costly

Opportunities

- Exposing the codes to more physics facilitates the integration of UQ methodologies with direct feedback on evaluations
 - > Can we embed nuclear data uncertainty in a Monte Carlo simulations?
 - Can we provide valuable feedback to evaluators on where larger source of uncertainties are coming from?
- Neural network representations of complex data structures
 - Can advancements in data sciences provide a new path to data representation that can be both accurate and efficient?
- Modern computing architecture
 - Can we leverage power of GPU architectures to enable large skill steady-state and transient simulations?

Part II: Generating high-fidelity nuclear data for deterministic calculations

Why do we need high-fidelity deterministic codes?

- Deterministic methods represent the bulk behavior of neutrons and can thus typically converge faster
 - > Transients!
- Energy condensation reduces the data size

$$\Sigma_f^g(\mathbf{r}) = \frac{\int_{E_{g'-1}}^{E_{g'}} dE \,\Sigma_f(\mathbf{r}, E) \phi(\mathbf{r}, E)}{\int_{E_{g'-1}}^{E_{g'}} dE \,\phi(\mathbf{r}, E)}$$

Full core performance of 3D OpenMOC vs OpenMC

	Machine	CPU-hours	Method
Gunow - PhD - 2017	Mira ⁴	800,000 ¹	3D MOC extruded geometry
Tramm – PhD – 2018	Theta ⁴	220,000 ²	3D MOC Random Ray
Gaston - PhD - 2019	Lemhi ⁴	200,000 ³	3D MOC Unstructured mesh
Giudicelli – PhD - 2020	Lemhi ⁴	6,000	3D MOC extruded geometry

- 1: Estimated at 200,000 CPU hrs on Lemhi
- 2: Simplified geometry
- 3: Estimated

4: Theta is a Xeon Phi system, Lemhi is a Xeon Skylake system, Mira is POWERPC8 system

- Monte Carlo (OpenMC) Full core PWR with pin powers
 - > 1% statistical accuracy in each pellet
 - ➤ ~100,000 CPU-hours on Lemhi-like system
 - Very difficult for transients due to time scales
 - Prompt neutrons of $\sim 10^{-5}$ s and delayed neutrons ~ 1 s

Multigroup data generation is a solution and a problem

• Starting from a simplified continuous energy form of the transport equation

$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + \Sigma_t(\vec{r}, E)\psi(\vec{r}, \vec{\Omega}, E) = Q(\vec{r}, \vec{\Omega}, E)$$

• Energy condensation is used to preserve reaction rates

$$\Sigma_{t,g}(\vec{r},\vec{\Omega}) = \frac{\int_{E_g}^{E_{g-1}} \Sigma_t(\vec{r},E)\psi(\vec{r},\vec{\Omega},E)dE}{\int_{E_g}^{E_{g-1}} \psi(\vec{r},\vec{\Omega},E)dE} = \frac{\int_{E_g}^{E_{g-1}} \Sigma_t(\vec{r},E)\psi(\vec{r},\vec{\Omega},E)dE}{\psi_g(\vec{r},\vec{\Omega})}$$

• Energy condensation introduces angular dependence to the multigroup crosssection, so we apply the following approximation

$$\underbrace{\sum_{t,g}(\vec{r},\vec{\Omega}) \approx \sum_{t,g}(\vec{r})}_{\text{Approximation 2}} \underbrace{\int_{E_g}^{E_{g-1}} \sum_t(\vec{r},E)\phi(\vec{r},E)dE}_{\int_{E_g}^{E_{g-1}} \phi(\vec{r},E)dE} = \frac{\int_{E_g}^{E_{g-1}} \sum_t(\vec{r},E)\phi(\vec{r},E)dE}{\phi_g(\vec{r})}$$

What if I only preserved reaction rates?

Approximation 3

 $\vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + \Sigma_t(\vec{r}, E) \psi(\vec{r}, \vec{\Omega}, E) \neq \mathbf{V}$

- OpenMC vs. OpenMOC for the 2D BEAVRS core
 - 70-group isotropic-in-lab scattering
 - 64 azimuthal and 3 polar angles in OpenMOC
 - Ray spacing is 0.05 cm
 - Fine spatial discretization

	k _{eff}	Error	Pin power relative error	
		(pcm)	RMS	Max
OpenMC	1.00490	(ref)	(ref)	(ref)
OpenMOC	1.02358	+ 1868	46.3%	90.2%

Liu, PhD thesis, 2020

Neutron migration

• If we start again from the simplified transport equation

$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + \Sigma_t(\vec{r}, E)\psi(\vec{r}, \vec{\Omega}, E) = Q(\vec{r}, \vec{\Omega}, E)$$

• We now apply the method of characteristic where we solve follow the neutron along its direction of travel (path *s*)

$$\frac{d\psi(\vec{r}-\vec{\Omega}s,\vec{\Omega},E)}{ds} + \Sigma_t(\vec{r}-\vec{\Omega}s,E)\psi(\vec{r}-\vec{\Omega}s,\vec{\Omega},E) = Q(\vec{r}-\vec{\Omega}s,\vec{\Omega},E)$$

• Introducing an integrating factor (for a homogeneous system)

$$\psi(\vec{r},\vec{\Omega},E) = \psi_{BC}(\vec{r}-\vec{\Omega}s_{BC},\vec{\Omega},E) \underbrace{e^{-\Sigma_t(E)s_{BC}}}_{0} + \int_0^{s_{BC}} Q(\vec{r}-\vec{\Omega}s,\vec{\Omega},E) \underbrace{e^{-\Sigma_t(E)s}}_{0} ds$$

Preserving the reaction rate will not preserve the attenuation! – This invalidates approximation 1.

Anisotropy must also be accounted for properly

Isotropic scattering

(Figure source:, Baptiste Jayet, 2015)

- Light nuclei have a large forward scattering component.
- Typically, scattering cosine angle is represented using Legendre polynomials (orthogonal between -1 and 1)
- H-1 requires high order scattering for accurate representation of neutron movement

This invalidates approximation 3.

Anisotropic scattering

High order scattering is needed

• Scattering source

$$Q_g^{scat}(\vec{r},\vec{\Omega}) = \frac{1}{2\pi} \sum_{g'=1}^G \int_{4\pi} d^2 \Omega' \Sigma_{s,g' \to g} (\vec{r},\vec{\Omega} \cdot \vec{\Omega}') \psi_{g'}(\vec{r},\vec{\Omega}')$$

where the scattering cross-section is expanded using Legendre polynomials

$$\Sigma_{s,g' \to g} \left(\vec{r}, \vec{\Omega} \cdot \vec{\Omega}' \right) = \sum_{l=0}^{L} \frac{2l+1}{2} \Sigma_{sl,g' \to g} \left(\vec{r} \right) P_l \left(\vec{r}, \vec{\Omega} \cdot \vec{\Omega}' \right)$$

- An anisotropic source complicates the solution of the neutron transport equation over a segment immensely!
 - Angular fluxes or flux moments are needed (x10-100 in memory)
 - > Number of operations increases substantially (x10-100 in operations)

Scale of full core PWR problem

- Storing angular fluxes is not possible or desirable
 - Methods are developed that only store scalar flux or low order angular flux moments
- High order scattering can become quite costly
 - *P*₃ scattering requires storing 16 spherical harmonics flux moments

10 billion unknowns in double precision is ~75GB

Transport cross-section

• To capture the high order scattering effects while keeping memory costs comparable to the isotropic-in-lab case, we introduce the transport correction

$$\Sigma_{tr}(E) = \Sigma_t(E) - \Delta_{tr}(E)$$

• This correction will allow us to capture the anisotropic scattering and preserve the migration area during the condensation process

$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + \Sigma_{tr}(\vec{r}, E)\psi(\vec{r}, \vec{\Omega}, E) = \frac{Q^*(\vec{r}, E)}{4\pi}$$

• How do we calculate the transport cross-section?

If done correctly, this could allow for approximations 1 and 3 to work.

One group model

• Textbook definition from Lamarsh (1961)

- Measures the true distance travelled after an infinite number of collisions
- μ-bar is the average cosine angle after a collision, equal to 2/3A for elastic scattering isotropic in the COM
- There is however a strong energy dependence!

Migration area

- Migration area is a relation between the square of the distance travelled by a neutron and the probability of getting absorbed by the medium along the way
- In one group diffusion theory, we can show that

$$M^2 \equiv \frac{D}{\Sigma_a}$$

which can also be related to the square distance from birth to absorption

$$M^2 = \frac{1}{6} \langle r^2 \rangle$$

From the P_1 equations (in 1D), we can relate Σ_{tr} to D

• Expand the angular flux using a first order Legendre polynomial expansion

$$\nabla \cdot \vec{J}(\vec{r}, E) + \Sigma_t(\vec{r}, E) \phi(\vec{r}, E) = \int_0^\infty \Sigma_{s0}(\vec{r}, E' \to E) \phi(\vec{r}, E') dE' + \frac{\chi(\vec{r}, E)}{k_{eff}} \int_0^\infty \Sigma_f(\vec{r}, E') \phi(\vec{r}, E') dE'$$

$$\nabla \phi(\vec{r}, E) + 3\Sigma_t(\vec{r}, E) \vec{J}(\vec{r}, E) = 3 \int_0^\infty \Sigma_{s1}(\vec{r}, E' \to E) \vec{J}(\vec{r}, E') dE'$$

• From the second equation, we can write

$$\vec{J}(\vec{r}, E) = -\frac{1}{3\left[\Sigma_t(\vec{r}, E) - \frac{1}{J(\vec{r}, E)} \int_0^\infty \Sigma_{s1}(\vec{r}, E' \to E) J(\vec{r}, E') dE'\right]} \nabla \phi(\vec{r}, E)$$

$$\downarrow$$

$$\Sigma_{tr}$$

Common approximations

$$\Sigma_{tr}(E) = \Sigma_t(E) - \frac{1}{J(E)} \int_0^\infty \Sigma_{s1}(E' \to E) J(E') dE'$$

- Many approximations have been introduced throughout the years, the most accurate being the in-scatter method which requires an approximate current spectrum
 - Out-scatter (and asymptotic) approximation are common in most textbook, but perform very poorly for most thermal systems
 - In-scatter is often difficult to implement since current can often be 0 in symmetric problems

• In-scatter

from solving P_1 Equations with small buckling

$$\Sigma_{tr,g}^{in} = \Sigma_{t,g} - \sum_{g'=1}^{G} \frac{\Sigma_{s1,g' \to g} J_{g'}}{J_g}$$

- Commonly-used approximations
 - out-scatter approximation

$$\Sigma_{tr,g}^{os} = \Sigma_{t,g} - \bar{\mu}_g \Sigma_{s0,g}$$

- *asymptotic* result of out-scatter approximation $\Sigma_{tr,g}^{as} = \Sigma_{t,g} - \frac{2}{3}\Sigma_{s0,g} \approx \frac{1}{3}\Sigma_{t,g}$
- flux-limited approximation

$$\Sigma_{tr,g}^{fl} = \Sigma_{t,g} - \sum_{g'=1}^{G} \frac{\Sigma_{s1,g' \to g} \phi_{g'}}{\phi_g}$$

Keep in mind the strong energy dependence!

- Figure shows the transport correction ratio (Σ_{tr} / Σ_t) as a function of energy for H-1
- Many collisions are needed to reach the asymptotic value
 - In H-1 this comes with a large change in energy
 - Poor energy resolution can
 lead to large errors in the fast
 leakage

Always perform energy condensation on $1/\Sigma_{tr}$

• The transport correction is introduced to preserve migration of neutrons, thus when condensing in energy, it should preserve the migration area.

$$\psi(\vec{r},\vec{\Omega},E) = \psi_{BC}(\vec{r}-\vec{\Omega}s_{BC},\vec{\Omega},E) \ e^{-\Sigma_{tr}s_{BC}} + \int_0^{s_{BC}} Q^*(\vec{r}-\vec{\Omega}s,\vec{\Omega},E) \ e^{-\Sigma_{tr}s} ds$$

- Two ways to think of this
 - From Diffusion theory

 $D_{g} = \frac{1}{3\Sigma_{tr,g}} \approx \frac{\int_{E_{g}}^{E_{g-1}} D(E)\phi(E)dE}{\int_{E_{g}}^{E_{g-1}} \phi(E)dE} = \frac{\int_{E_{g}}^{E_{g-1}} \frac{1}{3\Sigma_{tr}(E)}\phi(E)dE}{\phi_{g}} = \frac{1}{3} \frac{\int_{E_{g}}^{E_{g-1}} \lambda_{tr}(E)\phi(E)dE}{\phi_{g}}$ $\succ \text{ Or from Transport theory}$ $\Sigma_{tr,g} = \frac{\int \int \int \Sigma_{tr}(E)\psi(\vec{r},\vec{\Omega},E)dEdVd\Omega}{\int \int \int \psi(\vec{r},\vec{\Omega},E)dEdVd\Omega} = \frac{\int \int \int \Sigma_{tr}(E)\psi(\Omega,E)e^{-\Sigma_{tr}s}dEdVd\Omega}{\int \int \int \psi(\vec{r},\vec{\Omega},E)dEdVd\Omega} = \frac{\int \int \int \Sigma_{tr}(E)\psi(\Omega,E)e^{-\Sigma_{tr}s}dEdVd\Omega}{\frac{1}{\Sigma_{tr}^{2}}\phi_{g}} = \frac{\int \lambda_{tr}(E)\phi(E)dE}{\frac{1}{\Sigma_{tr}^{2}}\phi_{g}}$

Never energy collapse Σ_{tr} , always $1/\Sigma_{tr}$!

$$\frac{1}{\Sigma_{tr,g}} = \frac{\int_{E_g}^{E_{g-1}} \lambda_{tr}(E)\phi(E)dE}{\phi_g}$$

	Fast Group Diffusion Coefficient			
Energy Collapse Weighting	P1 with Inscatter	P1 with Outscatter	B1 with Inscatter	Monte Carlo Cumulative Migration*
Diffusion Coefficient	1.435	1.544	1.393	
Difference From MC	0.6%	8.3%	-2.3%	1.426
Sigma Transport	1.169	1.149	1.397**	1.420
Difference From MC	-18.0%	-19.4%	-2.0%	
Difference From MC	-18.0%	1.149 -19.4%	-2.0%	ing with 42 Durraw DD

*See Companion Paper by Liu, Smith, and Forget

** Lepannen for 2.4% lattice wth 12 Pyrex BP

In diffusion theory, it can lead to a 20% error in the fast group diffusion coefficient.

Liu, PhD thesis, 2020

Transport cross-section

	k _{eff}	Error (pcm)	M² (cm ²)	Relative error
OpenMC	1.00490	(ref)	55.56	(ref)
Consistent-P	1.02358	1868	33.30	-40.06%
Out-scatter	1.00129	-361	58.79	5.82%
Flux-limited	1.00411	-79	52.83	-4.90%
CMM (hom)	1.00213	-277	55.65	0.16%

Massachusetts Institute of Technology

Migration area is key!

Liu, PhD thesis, 2020

Angular dependence of the cross-sections

)

- Ignoring the angular dependence of the cross-section is problematic for heterogeneous geometries
 - In LWRs, leads to errors on the order of 200-300 pcm. Mostly on the over estimation of absorption in U-238 resonances.

The eigenvalue bias in pcm with isotropic-in-lab scattering. The number of radial rings is varied, holding the number of azimuthal sectors constant.

	FSR Discretization			
# Groups	$1 \times$	4 imes	16×	
1	80	55	66	
2	141	29	34	
4	27	-43	-57	
8	26	-85	-102	
16	35	-91	-111	
25	-31	-158	-182	
40	-38	-174	-202	
70	-39	-182	-211	

Approximation 2 will always lead to a minus 200-300 pcm error in coarse group structures (for LWRs), regardless of the scattering order or transport cross-section. Adding more groups >5000's will eventually eliminate this error.

Equivalence factors

• Most common approach is called SPH factors

 $(f_{ig}\Sigma_{ig})\Phi_{SPH}=\Sigma_{ig}\Phi_{ig}$

- Iterative approach
 - Solve OpenMC to get Σ and Φ_{MC} in each region
 - Set SPH factors (f) to 1
 - Iterate
 - $\Sigma^* = \Sigma \mathbf{x} \mathbf{f}$
 - Solve OpenMOC to get Σ^* and $\Phi_{\rm MOC}$
 - Calculate SPH factor (f)
- Typically done on small scale problem (e.g. pin cell) and used on larger problem

Limitations

- Transport cross section creates convergence issues
 - Dampening procedures have been proposed in the literature to alleviate some of these issues
- Transport cross sections are difficult to generate for heterogeneous cases
- Transport cross section accuracy can also be limiting for highly heterogeneous cases
 - > High order scattering might be necessary
- SPH factor generation is problem dependent, iterative and sometimes difficult

Opportunities – Can we learn multigroup cross sections?

Statistical Clustering – Assembly Example

- By observing noisy Monte Carlo results, we can see clusters emerge
 - Similar spatial locations are exposed to a similar spectrum and should yield the same value
 - Clustering can be used "to accelerate" the statistical convergence of Monte Carlo by identifying which clusters to combine without user input

U-238 Capture MGXS [barns]

At the core level

- Current state-of-the-art identifies similar pins at the assembly level
- Clustering techniques provide the ability to identify similar pins at the core level with no user intervention

Summary - Deterministic

- High-fidelity deterministic transport can provide accurate results at a fraction of the cost of Monte Carlo methods.
 - > Necessary for high fidelity transient analysis.
- High order scattering is necessary to properly represent the movement of neutrons in the presence of light nuclei
- Transport correction allows to preserve most of the effect of anisotropy at a fraction of the cost
 - Strong energy dependence that must be captured appropriately.
 - > Not all approximations work well for H-1.
 - > Always condense $1/\Sigma_{tr}$ in energy if further condensation is desired.
- If angular dependence of the cross-sections is not preserved, additional equivalence factors are needed.

Summary - Stochastic

- High fidelity Monte Carlo simulations require large amounts of nuclear data, especially in coupled simulations where temperature must be accounted for
 - Many techniques exist that can accurately capture the temperature effects in the resolved resonance range
- Random access of nuclear data can hinder performance on modern computing architectures
- By default, most general Monte Carlo simulations tools still neglect some important temperature phenomena
 - > Resonance upscattering
 - Thermal scattering

