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About Me
• Joined MIT in 2008

• Professor and Associate Department Head of Nuclear Science and Engineering

• Founded the Computational Reactor Physics Group
 Major highlights:

 OpenMC, an open source Monte Carlo code (lead developer Paul Romano)
 OpenMOC, an open source Method of Characteristic transport code
 BEAVRS benchmark, full core PWR with first 2 cycles of flux core mapping data
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Our goal
• One of our primary goals has been the 

development of high-fidelity neutron 
transport methods for full core nuclear 
reactor simulations
 Leverage high performance 

computing
 Improve data representation
 Reduce memory footprint
 Develop novel algorithms for 

improved efficiency
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Many of the roadblocks and bottlenecks identified for improving 
performance were tied to nuclear data 



Outline

• Part I: Nuclear data for high-fidelity Monte Carlo simulations
 Nuclear Data Requirements
 Nuclear Data Options
 Limitations and Opportunities

• Part II: Generating high-fidelity nuclear data for deterministic calculations
 Transport cross-section
 Equivalence Factors
 Limitations and Opportunities
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Assumptions
• When preparing this talk, I had to assume some level of knowledge, I thus 

assumed that most of you knew something about
 Nuclear cross-sections
 Neutron slowing down
 Criticality
 Multigroup cross-sections
 Transport equation
 Diffusion equation
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Part I: Nuclear data for high-fidelity Monte Carlo 
simulations
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The Big Picture

Oak Ridge National Laboratory, CASL News Release, 2014.



Beyond LWRs

Microreactor

Pebble Bed Reactor

Molten Salt Reactor



Current state-of-the-art
• Current methodologies rely on many-levels of approximation that have been extensively 

validated against experiments and operating nuclear fleet
 Currently licensed methods are highly accurate for the current fleet of reactors
 Most experiments were performed in the 60’s and 70’s

• New reactors promise much higher levels of heterogeneities.
• Experimental facilities in nuclear are increasingly costly and require very long lead times.

High-fidelity simulations are necessary to reduce the need for costly experiments for 
future nuclear reactor technologies



Why do we need high-fidelity Monte Carlo?
• Monte Carlo methods “faithfully” track neutrons 

through their lifetime
 High-fidelity representation of the nuclear data
 High-fidelity representation of the geometry
 High-fidelity representation of the fission and 

scattering source distribution
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Nuclide sampling

Collision sampling

Path sampling

10 orders of magnitude in Energy

ATR Geometry in OpenMC



Multiphysics applications
• High-fidelity simulations beyond benchmarking 

require at the very least thermohydraulic 
feedback
 Example of 3D 1/4 PWR between OpenMC

and subchannel
 Power distribution shifts radially and axially 

based on temperature feedback
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Harper, PhD-thesis 2020



Data Requirements (LWR Example)
• Our goal is to predict the power in every single fuel pellet as a function of time

 PWR has ~20,000,000 fuel pellets

 Every pellet has a different average temperature

 Every pellet has a unique temperature profile

 Fuel transmutes over its lifetime (each pellet resides ~5 years in the core)
 We must track ~6 different reactions that can occur in the fuel.
 We must follow ~300 nuclides being consumed and produced in the fuel.

Each event requires accessing 100’s of GBs of nuclear data!
Each time step requires ~3-5TB of data to be stored!

Detailed knowledge enables better fuel utilization, improves 
understanding of safety margins that can lead to a reduction of 

conservatism and improves predictability of the system. 



Temperature dependence of data
• Monte Carlo simulations are commonly used as reference calculations at fixed 

temperatures

• Cross sections are pre-generated at fixed temperatures using the BROADR 
(SIGMA1 algorithm) module of NJOY

• Nuclear data is commonly represented (in the resonance range) using models
representative of the R-matrix theory (SLBW, MLBW, RM, …)
 Requires only a few parameters per resonance (E0,Γ, Γn, Γf …)
 However, SIGMA1 requires a linearization of the data to perform the 

convolution integral
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Nuclear Data Reconstruction
• Every isotope has its own energy grid for each temperature

 Requires a binary search over 1000’s – 100,000’s of points

• Simple algorithmic fixes
 Unionized grid over all temperatures and isotopes

 Global or local (cell-based)
 Serpent uses a global unionized grid

 Hash table to accelerate search
 MCNP6 and OpenMC use a hash table

Total σt(E1) σt(E2) σt(E3) σt(E4) …

Capture σγ(E1) σγ(E2) σγ(E3) σγ(E4) …

Scattering σn(E1) σn(E2) σn(E3) σn(E4) …

Isotope 1 E1 E2 E3 E4 …

E

Total σt(E1) σt(E2) σt(E3) σt(E4) …

Capture σγ(E1) σγ(E2) σγ(E3) σγ(E4) …

Scattering σn(E1) σn(E2) σn(E3) σn(E4) …

Isotope 2 E1 E2 E3 E4 …

E

The further you reach for data, the 
slower your code becomes!



Options in the Resolved Resonance Range
• SIGMA1

 Linearize data and solve Solbrig kernel analytically over an 
energy band

 Some are exploring off-loading this operation to GPU

• Stochastic Mixing
 Randomly sample between bounding temperatures to mimic 

interpolation

 Requires temperature spacings on the order of 10-50K for 
good accuracy

• Kernel Reconstruction
 Reconstruct the Solbrig kernel effect using ~10 temperatures 

from which to randomly sample.  Weights are determined 
analytically through an error minimization process.
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Ducru et al, JCP, 2017



Options in the Resolved Resonance Range
• Gauss-Hermite Quadrature

 Replace convolution integral by a Gauss-Hermite quadrature

• Polynomial fitting (e.g. MCNP)
 High order fit across many temperatures

• Target Motion Sampling (e.g. SERPENT)
 Sample target velocity at collision site and apply rejection sampling

• Windowed Multipole (e.g. OpenMC)
 Transform the resonance parameters to an equivalent representation 

in complex space and perform convolution integral analytically

 For performance benefits, broadening only performed over a 
surrounding energy window
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Viitanen et al, NSE, 2012



Multipole Formalism
• Developed by R.Hwang in 1987

 Recognized that R-matrix formulation yielded a meromorphic 
function on which a partial fraction decomposition could be 
performed

 (E,Γ) real parameters are transformed into (p,r) complex 
parameters

 And the convolution integral yields
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Resonance Parameters
• Energy at peak
• Reduced Width for each reaction

Γ1

Γ2

Γ3
Γ4

E1 E2 E3 E4

Poles and Residues

Josey and Ducru, JCP, 2016



Windowed multipole method
• Key observation was made that Doppler broadening effects 

are local
 Far away resonances contribute to the local cross section

but they exhibit little to no temperature dependence

• Windowed multipole method creates a system of inner 
windows and pointers to minimize the number of Faddeeva
function evaluations
 Far away resonances are fitted to a low order polynomial 
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Temperature effects 
are very local

Josey and Ducru, JCP, 2016



Options in the Resolved Resonance Range

• SIGMA1

• Stochastic Mixing

• Kernel Reconstruction

• Gauss-Hermite Quadrature

• Polynomial fitting

• Target Motion Sampling

• Windowed Multipole
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Method Memory* Efficiency*
Single T ACE 1 1
Stochastic Mixing / Interpolation ~100 ~1.5-2
Kernel Reconstruction ~10 ~2
Gauss-Hermite Quadrature ~1 ~10-15
Polynomial Fitting ~20 ~1.1-1.3
Target Motion Sampling ~2 ~4-10
Windowed Multipole ~0.5-0.7 ~1.0-1.2

* Estimated by the lecturer (lower is better)



Rest of the Energy Range
• Thermal scattering

 Tables of (E, E’, µ, T) with interpolation
 PDF/CDF with temperature polynomial fitting
 Rejection Sampling

• Unresolved Resonance Range
 Equiprobable tables or surfaces
 Multiple independent URR representations

• Threshold reactions, depletion tallies, …
 (n,2n), (n,3n), (n,p), (n,α), …

• Secondary distributions
 Multiple scattering laws, multiple formats, …
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Outgoing Energy distribution
Incoherent Inelastic Scattering 

for H in H2O at 293K (from NJOY)



Limitations
• Resonance upscattering is not always included by default

 Observed in actinides with large low energy scattering resonances 
(<1000 eV) 

 Requires a rejection sampling algorithm or thermal scattering 
process that slows down computations

 Impacts reactivity coefficients in LWRs by as much as 10%

• Nuclear data evaluations sometimes hinder the use and 
development of new formats

• More accurate data representation can significantly hinder 
performance but may have little impact on your problem of 
interest
 Anisotropy of fission neutrons
 Detailed outgoing angular distributions

• Coupled simulations and transients are still very costly
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File 3 – Na23
Discontinuities in the 

evaluations create problems for 
new formats

Resonance upscattering in U238 from 
energy just below 36.6 eV resonance



Opportunities
• Exposing the codes to more physics facilitates the integration of UQ methodologies 

with direct feedback on evaluations
 Can we embed nuclear data uncertainty in a Monte Carlo simulations?
 Can we provide valuable feedback to evaluators on where larger source of 

uncertainties are coming from?

• Neural network representations of complex data structures
 Can advancements in data sciences provide a new path to data representation that can 

be both accurate and efficient?

• Modern computing architecture
 Can we leverage power of GPU architectures to enable large skill steady-state and 

transient simulations?
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Part II: Generating high-fidelity nuclear data for 
deterministic calculations
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Why do we need high-fidelity deterministic codes?

• Deterministic methods represent the bulk 
behavior of neutrons and can thus typically 
converge faster
 Transients!

• Energy condensation reduces the data size
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Net Leakage Neutron Interactions
Fission In-scattering

Neutron Losses = Neutron sources



Full core performance of 3D OpenMOC vs OpenMC

• Monte Carlo (OpenMC) Full core PWR with pin powers
 1% statistical accuracy in each pellet
 ~100,000 CPU-hours on Lemhi-like system
 Very difficult for transients due to time scales

 Prompt neutrons of ~10-5 s and delayed neutrons ~1 s
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Machine CPU-hours Method
Gunow – PhD – 2017 Mira4 800,0001 3D MOC extruded geometry
Tramm – PhD – 2018 Theta4 220,0002 3D MOC Random Ray
Gaston – PhD – 2019 Lemhi4 200,0003 3D MOC Unstructured mesh
Giudicelli – PhD - 2020 Lemhi4 6,000 3D MOC extruded geometry

1: Estimated at 200,000 CPU hrs on Lemhi
2: Simplified geometry
3: Estimated
4: Theta is a Xeon Phi system, Lemhi is a Xeon Skylake system, Mira is POWERPC8 system



Multigroup data generation is a solution and a problem
• Starting from a simplified continuous energy form of the transport equation

• Energy condensation is used to preserve reaction rates

• Energy condensation introduces angular dependence to the multigroup cross-
section, so we apply the following approximation
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Approximation 1

Approximation 2



What if I only preserved reaction rates?
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• OpenMC vs. OpenMOC for the 2D BEAVRS core
• 70-group isotropic-in-lab scattering
• 64 azimuthal and 3 polar angles in OpenMOC
• Ray spacing is 0.05 cm
• Fine spatial discretization

𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆
Error 
(pcm)

Pin power relative error

RMS Max

OpenMC 1.00490 (ref) (ref) (ref)

OpenMOC 1.02358 + 1868 46.3% 90.2%

Approximation 3

Liu, PhD thesis, 2020



Neutron migration
• If we start again from the simplified transport equation

• We now apply the method of characteristic where we solve follow the neutron 
along its direction of travel (path s)

• Introducing an integrating factor (for a homogeneous system)
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Preserving the reaction rate will not preserve the attenuation! – This invalidates approximation 1.



Anisotropy must also be accounted for properly

• Light nuclei have a large forward scattering component.

• Typically, scattering cosine angle is represented using 
Legendre polynomials (orthogonal between -1 and 1)

• H-1 requires high order scattering for accurate 
representation of neutron movement
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𝜇𝜇 = cos 𝜃𝜃

(Figure source:, Baptiste Jayet, 2015)

incident neutron

scattered neutron

This invalidates approximation 3.



High order scattering is needed

• Scattering source

where the scattering cross-section is expanded using Legendre polynomials

• An anisotropic source complicates the solution of the neutron transport equation 
over a segment immensely!
 Angular fluxes or flux moments are needed (x10-100 in memory)
 Number of operations increases substantially (x10-100 in operations)
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Scale of full core PWR problem

• Storing angular fluxes is not 
possible or desirable
 Methods are developed 

that only store scalar flux 
or low order angular flux 
moments

• High order scattering can 
become quite costly
 P3 scattering requires 

storing 16 spherical 
harmonics flux moments 
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10 billion unknowns in double precision is ~75GB



Transport cross-section
• To capture the high order scattering effects while keeping memory costs 

comparable to the isotropic-in-lab case, we introduce the transport correction

• This correction will allow us to capture the anisotropic scattering and preserve 
the migration area during the condensation process

• How do we calculate the transport cross-section?
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If done correctly, this could allow for approximations 1 and 3 to work. 



One group model

• Textbook definition from Lamarsh (1961)
 Measures the true distance travelled after an 

infinite number of collisions
 µ-bar is the average cosine angle after a 

collision, equal to 2/3A for elastic scattering 
isotropic in the COM

• There is however a strong energy dependence!
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𝛴𝛴𝑡𝑡𝑡𝑡 = (1 − �̅�𝜇)𝛴𝛴𝑡𝑡 =
1
3
𝛴𝛴𝑡𝑡

=
𝜆𝜆𝑡𝑡

1 − �̅�𝜇

𝜆𝜆𝑡𝑡𝑡𝑡 = 𝜆𝜆𝑡𝑡 + 𝜆𝜆𝑡𝑡�̅�𝜇 + 𝜆𝜆𝑡𝑡�̅�𝜇2 + ⋯

For H-1,



Migration area
• Migration area is a relation between the 

square of the distance travelled by a 
neutron and the probability of getting 
absorbed by the medium along the way

• In one group diffusion theory, we can 
show that

which can also be related to the square 
distance from birth to absorption 
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𝑀𝑀2 ≡ 𝐷𝐷
Σ𝑎𝑎

𝑀𝑀2 =
1
6
𝑟𝑟2



From the P1 equations (in 1D), we can relate Σtr to D
• Expand the angular flux using a first order Legendre polynomial expansion

• From the second equation, we can write
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Common approximations

• Many approximations have been introduced 
throughout the years, the most accurate 
being the in-scatter method which requires 
an approximate current spectrum
 Out-scatter (and asymptotic) 

approximation are common in most 
textbook, but perform very poorly for 
most thermal systems

 In-scatter is often difficult to implement 
since current can often be 0 in symmetric 
problems
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• In-scatter
from solving 𝑃𝑃𝑠 Equations with small buckling

• Commonly-used approximations
• out-scatter approximation

• asymptotic result of out-scatter approximation 

• flux-limited approximation

Σ𝑡𝑡𝑡𝑡,𝑔𝑔
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∞
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Keep in mind the strong energy dependence!

• Figure shows the transport 
correction ratio (Σtr / Σt) as a 
function of energy for H-1

• Many collisions are needed to 
reach the asymptotic value
 In H-1 this comes with a large 

change in energy
 Poor energy resolution can 

lead to large errors in the fast 
leakage
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H-1 Transport correction ratio



Always perform energy condensation on 1/Σtr 

• The transport correction is introduced to preserve migration of neutrons, thus 
when condensing in energy, it should preserve the migration area.

• Two ways to think of this
 From Diffusion theory 

 Or from Transport theory
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Never energy collapse Σtr , always 1/Σtr!
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In diffusion theory, it can lead to a 20% error in the fast group diffusion coefficient.

Liu, PhD thesis, 2020



Transport cross-section
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Geometry Power Distribution CMM Error Distribution

Cumulative Migration Area

Liu, PhD thesis, 2020



Migration area is key!
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CMM and In-scatter 
Error Distribution

Flux Limited Error 
Distribution

Out-scatter Error 
Distribution

Migration area error 
(%)

Pin Power RMS 
Error (%)

Pin Power Max 
Error (%)

Out-scatter 5.8 3.0 7.4
Flux Limited -4.9 4.6 9.5
In-scatter / CMM 0.2 0.4 1.5

Liu, PhD thesis, 2020



Angular dependence of the cross-sections
• Ignoring the angular dependence of the cross-section 

is problematic for heterogeneous geometries
 In LWRs, leads to errors on the order of 200-300 

pcm.  Mostly on the over estimation of absorption 
in U-238 resonances.
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Approximation 2 will always lead to a minus 200-300 pcm error in coarse 
group structures (for LWRs), regardless of the scattering order or transport 
cross-section.  Adding more groups >5000’s will eventually eliminate this error.

Boyd et al, ANE, 2018



Equivalence factors
• Most common approach is called SPH factors

 Iterative approach
 Solve OpenMC to get Σ and ΦMC in each region
 Set SPH factors ( f ) to 1
 Iterate

• Σ* = Σ x f
• Solve OpenMOC to get Σ* and ΦMOC
• Calculate SPH factor ( f )

 Typically done on small scale problem (e.g. pin 
cell) and used on larger problem

43

2D BEAVRS

1 / SPH



Limitations
• Transport cross section creates convergence issues

 Dampening procedures have been proposed in the literature to alleviate some of 
these issues

• Transport cross sections are difficult to generate for heterogeneous cases

• Transport cross section accuracy can also be limiting for highly heterogeneous 
cases
 High order scattering might be necessary

• SPH factor generation is problem dependent, iterative and sometimes difficult
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Opportunities – Can we learn multigroup cross sections?
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Boyd, PhD-thesis 2017 and Giudicelli, PhD-thesis 2020



Statistical Clustering – Assembly Example
• By observing noisy Monte Carlo 

results, we can see clusters 
emerge
 Similar spatial locations are 

exposed to a similar spectrum 
and should yield the same 
value

 Clustering can be used “to 
accelerate” the statistical 
convergence of Monte Carlo 
by identifying which clusters 
to combine without user input
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Boyd, PhD-thesis 2017



At the core level
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• Current state-of-the-art identifies 
similar pins at the assembly level

• Clustering techniques provide the 
ability to identify similar pins at the 
core level with no user intervention

Boyd, PhD-thesis 2017



Summary - Deterministic
• High-fidelity deterministic transport can provide accurate results at a fraction of 

the cost of Monte Carlo methods.
 Necessary for high fidelity transient analysis.

• High order scattering is necessary to properly represent the movement of 
neutrons in the presence of light nuclei

• Transport correction allows to preserve most of the effect of anisotropy at a 
fraction of the cost
 Strong energy dependence that must be captured appropriately.
 Not all approximations work well for H-1.
 Always condense 1/ Σtr in energy if further condensation is desired.

• If angular dependence of the cross-sections is not preserved, additional 
equivalence factors are needed.
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Summary - Stochastic
• High fidelity Monte Carlo simulations require large amounts of nuclear data, 

especially in coupled simulations where temperature must be accounted for
 Many techniques exist that can accurately capture the temperature effects in the 

resolved resonance range

• Random access of nuclear data can hinder performance on modern computing 
architectures

• By default, most general Monte Carlo simulations tools still neglect some 
important temperature phenomena
 Resonance upscattering
 Thermal scattering
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