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Short bio

● Studied physics at TU Vienna

● PhD in nuclear data evaluation 2015

● Postdoc at CEA Saclay (2015-2018) and 
Uppsala University (2018-2019)

● Since 2020 nuclear physicist in Nuclear 
Data Section at IAEA dealing with 
nuclear data library projects and code 
development
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Outline

About nuclear data

Bayesian statistics

Multivariate normal distribution

Approaches to solve Bayes equation in nuclear data evaluation

Generalized Least Squares

Gaussian processes
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Probabilities of various nuclear interactions 
involving the atomic nuclei, e.g., cross sections.

Relevant for:

● Reactor physics
● Radiation dosimetry
● Radiation protection
● Radioactive waste management
● Astrophysics
● Nuclear medicine
● Fusion research
● ...

Nuclear data

PSI Gantry 2 facility 

Palisades Nuclear 
Generating Stations

n

elastic

non-elastic

Target isotope

Joint European Torus
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Nuclear data evaluation
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General task setting
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System of reactions
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System of reactions
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Jaynes Robot

Hypotheses

H1: It rained
H2: It did not rain

Observations

O1: The ground is wet
O2: The ground is dry

Which hypothesis is true?

Edwin Thompson Jaynes
1922-1998
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Consistency with Aristotelian logic

Hypothesis

Observation

True

True
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Consistency with common sense

Hypothesis

Observation

True

More 
plausible
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Desiderata

(I) Degrees of Plausibility are represented by real numbers

(II) Qualitative Correspondence with common sense

(IIIa) If a conclusion can be reasoned out in more than one way, then 
every possible way must lead to the same result.

(from E.T. Jaynes, Probability Theory: The Logic of Science)

Richard Threlkeld Cox
1898-1991
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Desiderata / Cox theorem

(I) Degrees of Plausibility are represented by real numbers

(II) Qualitative Correspondence with common sense

(IIIa) If a conclusion can be reasoned out in more than one way, then 
every possible way must lead to the same result.

(from E.T. Jaynes, Probability Theory: The Logic of Science)

Richard Threlkeld Cox
1898-1991

Computation rules of probability theory follow

e.g., product rule
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Bayesian update formula

H hypothesis (“It rained”)
O observation (“Floor wet”)

P(H) probability of hypothesis to be true

P(O|H) probability to make observation O 
given hypothesis H is true

P(H|O) probability of hypothesis H
given we observed O

Thomas Bayes
1701-1761 Pierre Simon Laplace

1749-1827
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Bayesian update formula

H hypothesis (“It rained”)
O observation (“Floor wet”)

P(H) probability of hypothesis to be true

P(O|H) probability to make observation O 
given hypothesis H is true

P(H|O) probability of hypothesis H
given we observed O

Thomas Bayes
1701-1761 Pierre Simon Laplace

1749-1827

“Prior”

“Likelihood”

“Posterior”
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Bayesian update formula

H hypothesis
O observation

e.g., H(x) := “The cross section at 5 MeV is x mBarn”

P(H(x)) → P(x)

Which probability distributions for P(O|H) and P(H)?

Thomas Bayes
1701-1761 Pierre Simon Laplace

1749-1827
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Multivariate normal distribution

x

y
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Covariance matrix

A covariance matrix captures linear relationships and uncertainties

Variance / uncertainty squared covariance
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Bayesian Inference in Nuclear Data

Basic assumption

Observables can be 
predicted by nuclear model M
based on parameter set p

incident energy [MeV]

cr
os

s 
se

ct
io

n 
[m

B
ar

n]

prior distribution on model parameters 

likelihood: probability to measure cross sections σ 
if model parameter set p is true

posterior: refined probability distribution
for parameters taking into account observations σ 
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Which probability distributions?

supported by
- principle of maximum entropy
- easy to work with!

Prior distribution (model parameters)

Likelihood (experimental data) 

supported by 
- principle of maximum entropy,
- limiting distribution,
- central limit theorem
- easy to work with!
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Cooking a covariance matrix

detector

background noise

sample thickness*

“statistical” (counting) uncertainty

detector calibration uncertainty

uncertainty about sample thickness
uncertainty about background noise
...

*) Rights: Eckhard Pecher, http://creativecommons.org/licenses/by/2.5/ 

http://creativecommons.org/licenses/by/2.5/
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Quantities of interest

● Expectation of parameters according to posterior distribution

● Mode (maximum) of posterior distribution

● Standard deviation parameters according to posterior distribution

● Correlations of distribution
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Nuclear data challenges

Regarding nuclear models
● Non-linear (nuclear physics is complicated)
● Not analytic (differential equations, simulation)
● Computationally expensive (minutes to hours)

Regarding linear algebra
● Computing with large covariance matrices

Regarding statistical models
● Imperfect physics model
● Multivariate normal distribution may be not 

always appropriate
● Uncertainties wrong or unknown
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How to evaluate?

Three possibilities

a) Linearization

b) Surrogate approach

c) Monte Carlo procedure
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1) generate ensemble                  from prior

2) calculate 

3) Calculate statistics from posterior distribution, e.g., best estimates, 
correlations, uncertainties, etc. by likelihood weighting 

Monte Carlo approach
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Linearization

Analytical update formulas



29

Linearization: Possible issues

●● ●●
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Surrogate approach
basic idea

aV

v1

is linked to 

replaced by

ϭ
1

ϭ
2
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Surrogate approach
construction of M

sur

1) draw ensemble                                 from prior distribution

2) use nuclear model to calculate 

3) estimate multivariate normal distribution in observation space

Analytic update formulas
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Surrogate approach: Behavior
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Visualization of non-linearity
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Generalized Least Squares (GLS)
in a nutshell

Prior

Likelihood

Bayesian update

Posterior

“GLS formulas”
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Simple example: straight line model

Prior

Likelihood
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Straight line model
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Straight line model
(garbage in, garbage out)
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Important insight about models

“All models are wrong but some are useful”

- George E. P. Box

Ice cream or pizza?

Reality
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More realistic modeling

Experimental Observation = Model Prediction +

Model Error +

Measurement Error

Experimental Observation = Model Prediction +

Measurement Error

( ) ( ) ( )Exp Mod ExpE E Es = s + e

( ) ( ) ( )( )Exp Mod ExpModE E E Es = s + + ee

True Mods = s

True Mod Mods = s + e
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Stochastic process
e.g., stock price evolution

jumps: +1 / -1

1 jump/second

stochastic process
is associated with a 

random function

How can we mathematically define a process?
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Stochastic process
with observation

observation
rules out 

a lot of paths 

How can we constrain a process with observations?
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Characterization of a Gaussian 
process

All finite sets of function values at different locations are 
distributed according to a multivariate normal distribution
→ Gaussian process
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Specification of a Gaussian process

Specify a function that yields the covariance 
between function values f(x

1
) and f(x

2
) for any 

possible pair x
1
 and x

2
. This function is called a 

covariance function.

Specify another function μ(x) that yields the 
center value of the process at location x. This 
function is called a mean function.
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Sampling from a Gaussian process

X
1

X
2

X
3

...
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Examples of Gaussian processes

Play video

videos/gp_prior_animation.mp4
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Constraining with observations /
Model training

Use GLS formulas:

Introduce computational mesh U and experimental mesh V
and identify:

Resulting vector p1 contains posterior predictions on 
mesh U and A1 is the associated covariance matrix

(Other terms: Gaussian process regression, Kriging)
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GPs constrained with observations

Play video

videos/gp_posterior_animation.mp4
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GPs constrained with observations

The posterior covariance matrix encodes more than just uncertainties!
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Machine learning view on GPs

● Gaussian process regression is a method to learn a non-linear 
function f(x) from observations {(xi, yi)}i=1..N

● It can be used for regression and classification problems

It is an alternative to other ML techniques, e.g., 
random forests and neural networks with its own 
pros & cons
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Comparison to neural networks

GP processes artificial neural networks

… are methods for classification and regression

… are universal function approximators 

…  scale better to large data sets

…  are able to capture non-local features

…  are difficult to interpret

… are statistical methods from the ground up (uncertainties)

… facilitate the incorporation of prior assumptions

Both approaches … 

Neural networks … 

GP processes … 

… interface well with existing nuclear data evaluation methods
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Why we started talking about GPs
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Linear model as Gaussian process
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Relationship: linear models and GPs

● All linear models (splines, Fourier series, other polynomials, …) 
can be represented as a Gaussian process if one assigns a prior 
covariance matrix to the model parameters/coefficients

● Some Gaussian processes can be represented as a linear model 
with a finite number of parameters and a multivariate normal 
prior on the parameters

● All Gaussian processes can be represented as a linear model with 
an infinite number of parameters

Clarification: e.g., y(x) = ax2 + bx is a linear model in our context 
because the predictions at all x are a linear function of the 
parameters a and b
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Combination of Gaussian processes
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Behavior of combined GPs

Sum of random functions f1(x) + f2(x)

Some kind of modulation

Play video

videos/gp_prior_combination_animation.mp4
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Disentangling Gaussian processes

computational mesh U and experimental mesh V

Compound prediction on computational mesh U and associated covariance matrix:
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Disentangling Gaussian processes

computational mesh U and experimental mesh V

Model prediction on computational mesh U and associated covariance matrix:
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Example of disentangled compound GP

More conservative model prediction uncertainties
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Recap

● Introduction to Bayesian statistics with multivariate normal model

● Common approaches in Nuclear Data to (approximately) evaluate 
the Bayesian update equation (GLS method)

● Gaussian processes as flexible modeling framework to fit functions 
which is mathematically compatible with the GLS method 
(Gaussian process regression = GLS with linear models with 
possibly infinitely many parameters)

Bayesian inference is a large research field and it is applied in many 
domains, e.g., natural language processing, image analysis, time 
series prediction, etc. and there is a vast world of possibilities 
beyond the GLS method, also for nuclear data!
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Nuclear data challenges & 
perspectives

Regarding nuclear models
● Non-linear (nuclear physics is complicated)
● Not analytic (differential equations, simulation)
● Computationally expensive (minutes to hours)

Regarding linear algebra
● Computing with large covariance matrices

Regarding statistical models
● Imperfect physics model
● Multivariate normal distribution may be not 

always appropriate
● Uncertainties wrong or unknown

Machine Learning techniques
● Robust outlier detection
● Global approaches to cross section 

predictions over the nuclide chart
● Enhance traditional Bayesian evaluation 

techniques with ML methods
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Andes picture: Carlos Valera, https://www.flickr.com/photos/c32/8025427795, https://creativecommons.org/licenses/by/2.0/ 

https://www.flickr.com/photos/c32/8025427795
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References

● E. T. Jaynes “Probability Theory: The Logic of Science” (first 
chapters available online for free)

● C. E. Rasmussen & C. K. I Williams, “Gaussian processes for 
Machine Learning”, http://www.gaussianprocess.org/gpml/

● Presentation, videos and code at 
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