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CBZ: a deterministic reactor physics code system

At JAEA, the new R&D project about the next-
generation reactor physics code system was launched in
2002.

Before that, almost all the reactor physics programs
were developed with FORTRAN-77 in Japan. To improve
extensibility, maintainability and reusability of code
systems, the object-oriented computer languages such
as C++ and Python were adopted in this project.

As one of the prototypes, the original version of CBZ,
CBG, was developed by myself with C++.

After moving to Hokkaido University in 2011, a new
version, CBZ, has been being developed.




CBZ: a deterministic reactor physics code system

Various kinds of reactor physics calculations can be easily
realized by CBZ.
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Explicit Fission Product (EFP) model for kinetic calculations

We have proposed an explicit fission products (EFP) model for spatially-
dependent kinetics calculations.

With this model, time-dependent energy deposition by prompt/delayed
neutrons/gamma-rays can be explicitly treated.
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Nuclear data given to each FP such as fission yield,
decay constant and Pn values, are directly used.

K.Katagiri, G.Chiba Spatially-dependent nuclear reactor kinetic calculations with the explcit fission product model,
Ann. Nucl. Energy, 133, pp.202-208 (2019).




Explicit Fission Product (EFP) model for kinetic calculations

Transient of gaseous FP (Kr, Xe, |) leakage in a critical condition can be simulated:
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Sensitivity calculation of fuel assembly burnup property

- We have implemented a new capability to calculate sensitivity of k-inf and
nuclide inventories during burnup of LWR fuel assemblies with respect to nuclear
data such as reaction cross section, fission yield and decay constant.

- Nuclear data-induced uncertainties can be quantified without statistical
uncertainties.
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- G. Chiba, Perturbation theory for nuclear fuel depletion calculations with predictor-corrector method, J. Nucl. Sci. Technol., 55, p.290 (2018).

- G. Chiba, K. Honta, Sensitivity and uncertainty analyses of fission product nuclides inventories for passive gamma spectroscopy, J. Nucl. Sci.
Technol., 57, p.1265 (2020).

- G. Chiba, Sensitivity analysis of neutron multiplication factors during nuclear fuel burnup in light water reactors regarding gadolinium isotopes
nuclear data, Ann. Nucl. Energy, 151, 107949 (2021). 6




Design optimization for neutron source in medical application

The Sn transport module in CBZ is applied to neutron source calculations.
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Numerical results which reasonably agree with the PHITS results can be quickly obtained.




TRU waste repository site temperature simulation

From nuclide inventory calculations in TRU wastes to temperature profile calculations
at the waste repository site can be conducted with CBZ.
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Light propagation calculations with specific scattering kernel

In the light propagation calculations in the field of bio-optics, the following HG
scattering kernel is generally used for photon: o -
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To treat such significant anisotropy, not the Legendre expansion but the
Direct Angular Representation (DAR) in the Sn transport calculations is
generally adopted in the field of bio-optics.
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Light propagation calculations with specific scattering kernel

We have tested this treatment in a slab system, and the Legendre expansion
works better rather than the DAR. In future, the similar comparison will be
made in multi-dimensional system with a point source.

el Mean absolute percentage error
Scalar flux spatial distribution P 8

20

80

100

(the number of directions)

in scalar flux
35 10E+01 r T T
g Legendre

— 30 N Direct
v
N
§ 25 .
= 1.0E+00 |- E
a o
2 20 |1 x
c w
9 o
*q;: 1.5 f g
c 1.0E-01 | <
o 1.0 s
@
&

0.5 |

0.0 \ ! 1.0E-02 L - - -

0 10 20 30 40 50



Code system structure

Main programs for users
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CBZ is written by C++ and various classes are prepared. Users need to
prepare a main program in C++, which uses instances of the CBZ classes.
Several “templates” for main programs are prepared, so it is not difficult for
young students to do calculations with CBZ.




CBZ: a deterministic reactor physics code system

CBZ is based on the deterministic procedure, so energy-
averaged (multi-group, MG) nuclear data are essential.
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How to get nuclear data information

General-purpose file FY data Decay
purp file data file
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New MG data generation system with FRENDY

General-purpose file
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All the calculations relevant to neutrons can be conducted with CBZLIB
generated from the general-purpose file only with FRENDY.




Nuclear data and its application fields

model calculation results
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Nuclear data and its application fields

Differential
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model calculation results
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physics simulation can be a connection of nuclear
data to the real world?
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Nuclear data and its application fields
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Nuclear data and its application fields

Differential
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model calculation results

(" evatuation ]\

J

ENDF-formatted
evaluated nuclear
data file

4

[ Processing ]\

Does the ACE-formatted file contain

all the information required for the

reactor physics simulation? ... Yes

Point-wise data file J

]

[ Processing

Processing

ACE-formatted data file

-

\_

\

Application in the nuclear
engineering field

J

|

[ Reactor physics codes J

|

Processing

MG data J

18




Nuclear data and its application fields

Differential
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model calculation results
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Are there any problems and
limitations in the existing MG data?
... This can be overcame by the new
code such as FRENDY.
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Concluding remarks

We have been developing a general-purpose reactor
physics code system CBZ.

With CBZ, various kinds of numerical simulations in the
field of nuclear reactor physics are realized.

The application areas of CBZ have been recently
expanded.

Actually | have not felt any inconveniences in the current
evaluated nuclear data files and their processing codes;
Those are well-designed and well-structured (my
personal view).




To Kawano-san (some techniques to avoid negative scattering)
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J. M. DelGrande, K. A. Mathews, “Nonnegative anisotropic group
cross sections: hybrid Monte Carlo-discrete elements-discrete
ordinates approach,” Nucl. Sci. Eng., 139, p.33 (2001).

J. W. Kim, N. Z. Cho, “An efficient deterministic method for
generating non-negative scattering cross-sections,” Ann. Nucl.
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