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§ FUDGE
— used to convert ENDF-6 and LLNL ENDL files into GNDS, and GNDS to 

ENDF-6.
— is used to modify and plot GNDS data.
— FUDGE is used to process GNDS for Monte Carlo and multi-group 

transport (deterministic).

§ We are developing EMU that uses FUDGE to sample 
realizations.

§ GIDI+
— GIDI is used by our transport codes to read GNDS data.
— GIDI is used by our deterministic transport codes to access multi-group 

data.
— MCGIDI is used by our Monte Carlo transport codes to lookup and sample 

data.

Overview
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§ FUDGE, EMU and GIDI/MCGIDI work on an individual
PROjectile + TARget + Evaluation file.
— Called a protare in GIDI and MCGIDI

§ A list of protares are referenced in a “map” file to create a library.
— Map file specifications will probably be in GNDS 2.0.

§ We developed multi-group and flux formats based on GNDS 
containers that are used for processing (i.e., grouping) and collapsing.

§ GIDI+ (and FUDGE) work with LLNL’s GNDS 1.10 and are almost 
compatible with 2.0. Note, the official version of GNDS is 1.9.

§ In addition to GNDS reactionSuite (i.e., protare) and PoPs files, FUDGE 
and GIDI support map, multi-group and flux files.

Overview II

Map, protare, PoPs, group and flux files complete our nuclear data needs.
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§ GNDS/FUDGE/GIDI+ are particle agnostic
— Any particle can be projectile
— Any particle can be outgoing particle
— Just need to be defined in PoPs (mainly mass)

§ GNDS/FUDGE/GIDI+ are reaction agnostic
— This is, do not have a fininte list of MTs
— For example, supports any number of (n,n’) reactions, not limited to 40 

like ENDF
— Another example is the 3 reaction for TNSL

Overview III
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Map file -- test.map

<map library=”test22" format="0.2">

<protare projectile="n" target=”O16" evaluation=”fromJoe”
path=”fromJoe/n-008_O_016.xml"/>

<protare projectile="n" target=”U235" evaluation=”fromJoe”
path=”fromJoe/n-092_U_235.xml"/>

<protare projectile="n" target=”U235" evaluation=”Ian”
path=”fromIan/n-092_U_235.xml"/>

<protare projectile="n" target=”U238" evaluation=”Ian”
path=”fromIan/n-092_U_238.xml"/>

<!--Implement with the GIDI ProtareTNSL class -->
<TNSL projectile="n" target="OinBeO" evaluation="ENDF/B-8.0”

path="tsl/tsl-OinBeO.xml">
standardTarget="O16" standardEvaluation="ENDF/B-8.0”/>

<import LLNL.map></map>



9
LLNL-PRES-xxxxxx

§ Multi-group boundaries format uses GNDS <group> node to 
store the label and boundaries for a group.

§ Flux stored as flux(T,E,mu) using a GNDS 3d function.

Multi-group boundaries and flux file

<group label="LLNL_gid_23">
<grid index="0" label="energy" unit="MeV" style="boundaries">

<values>2.0908e-6 2.0908e-4 1.8817e-3 .010245 .07002 0.27097 .7527 15.754</values></grid></group>

<XYs3d label="LLNL_fid_1">
<axes>
<axis index="3" label="temperature" unit="MeV/k"/>
<axis index="2" label="energy_in" unit="MeV"/>
<axis index="1" label="mu" unit=""/>
<axis index="0" label="flux" unit="1/s"/></axes>

<XYs2d outerDomainValue="0.0">
<Legendre outerDomainValue="0.0"><values>85</values></Legendre>
<Legendre outerDomainValue="21.0"><values>85</values></Legendre></XYs2d></XYs3d>
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§ PoPI
— Properties of Particle Interface
— C++ API to read and allow access to GNDS PoPs data

§ GIDI
— General Interaction Data Interface
— C++ API to read and access to GNDS data
— Developed to give GNDS protare access for transport codes
— Follows outline of GNDS
— Has Map and Protare classes
— Also reads multi-group and flux files

§ MCGIDI
— Monte Carlo General Interaction Data Interface
— C++ API for use in Monte Carlo transport codes
— Extracts data from a GIDI::Protare
— Stores data in more suitable way for Monte Carlo transport
— Cross section look up by temperature and projectile energy for host code
— Samples a reaction for a protare
— Samples outgoing particle data for a reaction

GIDI+ main user packages
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Directory structure of packages GIDI3, MCGIDI 
and PoPI

Makefile
Doc/ # Documentation
Speeds/ # Extra
Src/ # All *.hpp and *.cpp files
Test/ # A suite of tests run with “make check”
bin/ # Some useful executables and their sources
include/ # “make” puts needed user *.hpp files here
lib/ # “make” puts needed user library files here

Example of executable in GIDI/bin:

readAllProtaresInMapFile # Reads all protares in a map file.

Examples of a PoPI file, a map file and various protare files are found in the Test directories.
Currently, GIDI has 80 and MCGIDI has 74 tests.
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§ To use GIDI and MCGIDI requires additional packages. GIDI, 
MCGIDI and these additional packages are dubbed GIDI+.
— pugixml-1.8
• Third party XML parser
• Written in C++

— HDF5 will soon be added for reading XML/HDF5 files
— statusMessageReporting
• Handles message passing between C packages
• Written in C

— numericalFunctions
• Supports 1d numerical functions including addition, multiplication
• Written in C

— PoPI
— GIDI
— MCGIDI

GIDI+ (or gidiplus)

statusMessageReporting and numericalFunctions are also used by FUDGE.
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§ Property of Particles Interface (PoPI)

§ Implements the PoPs part of GNDS

§ Uses strings for particle IDs as defined in GNDS
— (e.g., “O16”, “n”, “U235”, “u235_e6”)

§ Current LLNL PoPs files
— pops.xml (currently only defines ground state nuclei)
— metastables_alias.xml (e.g., “Am242_m1” for “Am242_e2”)
— LLNL_alias.xml (e.g., “92235” for “U235”)

PoPI C++ API

GNDS PoPs supports aliasing. Alias are also strings (e.g., “92235” for “U235”).
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§ General Interaction Data Interface (GIDI)

§ A C++ API for reading a GNDS reactionSuite (i.e., protare).
— Uses PoPI to read the PoPs part.

§ Retrieving and collapsing multi-group data for use in deterministic 
codes (or Monte Carlo but that is better handled by MCGIDI).

§ The Protare class is a virtual class. Actual classes are ProtareSingleton, 
ProtareComposite and ProtareTNSL.

§ Support reading/writing GNDS 1.10 and 2.0(?) but, like FUDGE, uses 
2.0 internally.

§ Implemented in LLNL’s determinstic transport code Ardra

GIDI C++ API
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Simple GIDI example

GIDI::Map map( “test.map”, pops );

GIDI::Construction::Settings construction( GIDI::Construction::e_all,
GIDI::Construction::e_nuclearAndAtomic );

GIDI::Protare *protare = map.protare( construction, pops, PoPI::IDs::neutron, "O16" );

// LLNL protares are processed with 23 temperatures.
GIDI::Styles::TemperatureInfos temperatures = protare->temperatures( );

GIDI::Settings::MG settings( protare->projectile( ).ID( ), label, true );
GIDI::Vector crossSection = protare->multiGroupCrossSection( settings, particles );

(venv-3.7.2) # temperatures.py ~/GIDI_plus/GIDI/Test/Data/MG_MC3Ts/neutrons/n-008_O_016.xml
/g/g16/beck6/Git/GIDI_plus/GIDI/Test/Data/MG_MC3Ts/neutrons/n-008_O_016.xml
temperature 0.0 K: eval

temperature [K]      heated  griddedCrossSection URR_probabilityTables heatedMultiGroup SnElasticUpScatter
---------------------------------------------------------------------------------------------------------------

300.1  heated_000       MonteCarlo_000                          MultiGroup_000
1.16e+04  heated_001       MonteCarlo_001                          MultiGroup_001
1.16e+06  heated_002       MonteCarlo_002                          MultiGroup_002

typedef std::vector<Styles::TemperatureInfo> TemperatureInfos;
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§ Monte Carlo GIDI (MCGIDI)

§ A C++ API for Monte Carlo transport codes

§ Like GIDI, the Protare class is a virtual class. Actual classes are 
ProtareSingleton, ProtareComposite and ProtareTNSL.

§ Can do LLNL model A and B (MCNP) upscatter for outgoing particles

§ Supports broadcasting for MPI and GPUs

§ Implemented in LLNL’s Monte Carlo transport code Mercury

MCGIDI C++ API for GNDS
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Simple MCGIDI example

double energy = 14.1, crossSection, reactionCrossSection;

MCGIDI::DomainHash domainHash( 4000, 1e-8, 10 );
MCGIDI::Protare *MCProtare = MCGIDI::protareFromGIDIProtare( *protare, pops, MC

particles, domainHash, temperatures, reactionsToExclude );

int hashIndex = domainHash.index( energy );
crossSection = MCProtare->crossSection( URR_infos, hashIndex, temperature, energy );
reactionCrossSection = MCProtare->reactionCrossSection( ir, URR_infos, hashIndex,

temperature, energy );

int reactionIndex = MCProtare->sampleReaction( URR_infos, hashIndex,
temperature, energy, crossSection, rng, rngState );

reaction->sampleProducts( MCProtare, energy, input, products );
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§ Finish specification of GNDS 2.0 support

§ Add units support to GIDI+

§ Speed up MCGIDI

§ “True” on-the-fly heating

§ Multi-grouping on-the-fly

§ Thermal nuclear data
— This is Maxwell averaged nuclear data
— Used, for example, in astrophysics

§ Update GEANT4 for latest GIDI+

Some general stuff
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§ Our current PoPs data only has nuclear ground state data.
— Disk size is 2 MB

§ Ian Thompson has created a PoPs database that includes 
nuclear excitation levels from RIPL
— Disk size is 96 MB
— Takes GIDI 8 seconds to read in and FUDGE over a minute
— Still far from complete (e.g., missing decay data)

§ We are developing a ‘Map Of Particles’ (mop) structure that 
outlines a PoPs database and makes reading in a few particles 
much faster and uses much less memory.

Expanding PoPs database
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§ Why HAPI
— To supports GNDS in other “meta-languages” (XML, HDF5, XML/HDF5, 

etc.)
— Need to improve load time (90% time spent converting double strings to 

binaries)
— Takes about 70 minutes to read in all of ENDF/B-VIII.0 processed with 23 

temperatures. Has evaluate, heated, MC and multi-group data.

§ Status
— All in XML, or values nodes in HDF5 and the rest in XML
— Caleb Mattoon and Adam Kunen (computer support) are about to release 

GIDI+ with HAPI

HAPI (Hierarchical  API)

Mode XML Hybrid Uncomp Hybrid gzip
m=0 (all) 2.0x 6.6x 2.6x
m=1 (MC) 2.9x 9.0x 3.2x
m=2 (SN) 3.6x 10.7x 6.7x
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§ Read time components for XML/HDF5 hybrid
A. 8% parsing XML
B. 25% reading bulk arrays from HDF5
C. The rest: GIDI constructing

§ We will also make changes to how FUDGE writes GNDS files.
— These changes will still be GNDS 2.0 compliant
— These changes will reduce load times for A, B and C above
— This should give us another factor of two faster loading

§ We plan to allow for the reading of only the temperature data 
needed. This would greatly reduce C when only a single 
temperature is requested

More efficient GNDS files

LLNL transport codes read data in parallel which greatly reduces load times.
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§ Currently, GIDI only reads and supports the parts of the GNDS 
needed by transport codes

§ In particular, it does not support
— Documentation nodes
— Covariance data in the GNDS file
— Resonance data in the GNDS file

§ We will be adding support for all parts of GNDS

Support for all parts of GNDS
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§ GIDI and MCGIDI support photo-atomic and photo-nuclear data
— ProtareComposite is a sub-class of Protare class
— It allows one to treat photon as projectile as one instance.
• Has one ProtareSingle for photo-atomic data and one for photo-nuclear data

— In the future it may be used for element protares
• E.g., a protare with “n  + Fe” may contain “n + (Fe54, Fe56, Fe57 and Fe80)”  

§ We plan to add support for X-ray Fluorescence Data
— GIDI
— MCGIDI for sampling

§ LLNL’s Monte Carlo code Mercury is looking to add electrons
— We plan to add electron data to GIDI and MCGIDI
— Also processing in FUDGE

Improved gamma (photon) and electron support
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§ We are releasing all codes under https://github.com/LLNL
— FUDGE
• Named “fudge”
• Version 4.2.3
– Python 2.7

• Next version
– Python 3.6+
– Pip install

• BSD license (probably will switch to MIT license)
— GIDI+
• Named “gidiplus”
• Version 3.18.129
• GNDS 1.10 (internal LLNL version)

§ Releasing all codes under MIT license, except currently FUDGE

Code releases

We need to release a GNDS 2.0 version soon.

https://github.com/LLNL
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