

Handling the evaluated nuclear data format and ACE format in FRENDY

Japan Atomic Energy Agency Kenichi TADA

Nagoya University

Akio YAMAMOTO and Tomohiro ENDO


Contents

- Overview of nuclear data processing code FRENDY
- Treatment of GNDS (plan)
- Multi-group XS file generation from ACE file
- Other tools to handle ENDF and ACE files
 - XS plotting tool for ENDF/ACE files
 - ENDF/ACE modification tool
 - ACE file perturbation tool

Development of nuclear data processing system FRENDY

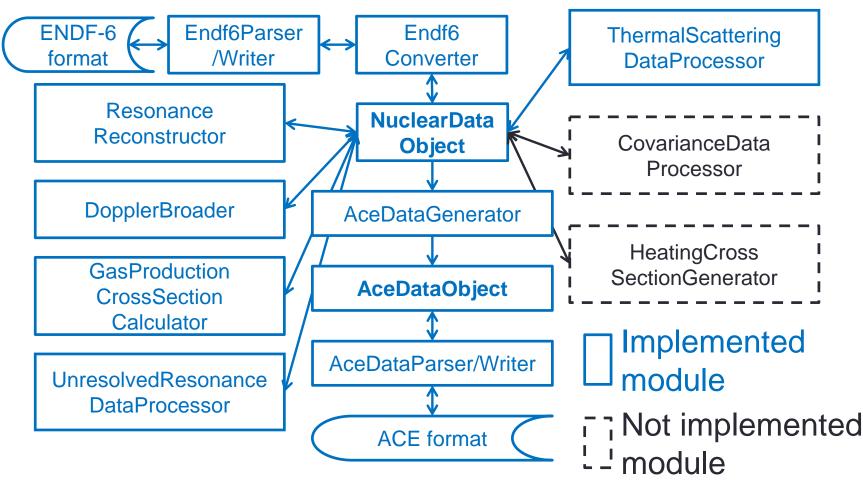
- JAEA started developing a new nuclear data processing system FRENDY in 2013.
 - FRom Evaluated Nuclear Data librarY to any application
 - To process nuclear data library by JAEA's nuclear application code users with simple input file.
- FRENDY Version 1 was released in 2019.
 - FRENDY Ver. 1 only generates ACE files.
 - https://rpg.jaea.go.jp/main/en/program_frendy/
- FRENDY Version 2 will be released in the near future.
 - FRENDY Ver. 2 generates multi-group XS file.

Features of FRENDY

- Utilization of modern programming techniques
 - C++, BoostTest library, Git
 - Improvement of quality and reliability
- Consideration of maintainability, modularity, and flexibility
 - Encapsulate all classes
 - Minimize the function of module
 - Maintain the independence of each module
- Processing methods of FRENDY are similar to NJOY.
- Ref. K. Tada, et. al., "Development and verification of a new nuclear data processing system FRENDY," *J. Nucl. Sci. Technol.*, **54** [7], pp.806-817 (2017). (http://www.tandfonline.com/doi/abs/10.1080/00223131.2017.1309306)

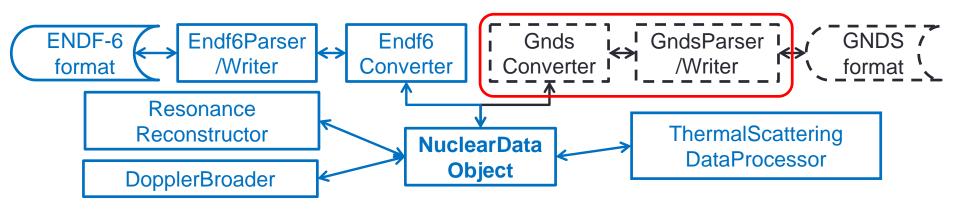
Release of FRENDY Ver. 1

- FRENDY Ver.1 was released from our website.
 - https://rpg.jaea.go.jp/main/en/program_frendy/
 - Only generates ACE files.
 - Generation of multi-group cross section will be implemented soon.
 - Open source software
 - 2-Clause BSD license
 - Presentations of FRENDY training course and exercise are also found in this website
- Manual of FRENDY Ver. 1
 - JAEA-Data/Code 2018-014
 - https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2018-014.pdf

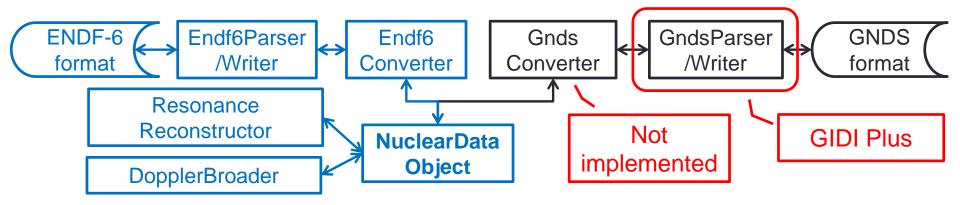


Treatment of GNDS (plan)

Structure of FRENDY


- Modularity is carefully considered.
 - Modules of FRENDY can be used other calculation codes by adding only a few lines.

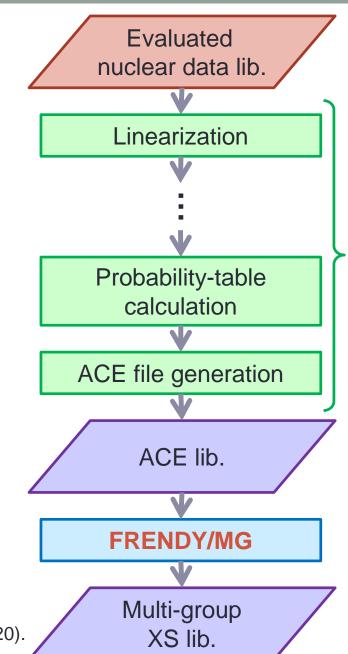
Advantage for using the FRENDY's original nuclear data object


- FRENDY has original format of the nuclear data for efficient management.
 - NuclearDataObject class
- Minimizing the impact by the change of nuclear data format
 - Developer and users are not necessary to consider the nuclear data format.
 - Consideration of a new data format GNDS
 - GNDS format can be addressed if another set of parser, writer and converter classes are implemented.

Treatment of GNDS (plan)

- FRENDY will use GIDI plus of LLNL for accessing GNDS.
 - We will implement a converter class to copy the nuclear data from GIDI plus to FRENDY (NuclearDataObject).
- We are now focusing on development multi-group generation and processing covariance data.
 - Treatment of GNDS will be considered after these work is completed.

IAEA CM, 2021/03/15-17


Multi-group XS file generation from ACE file

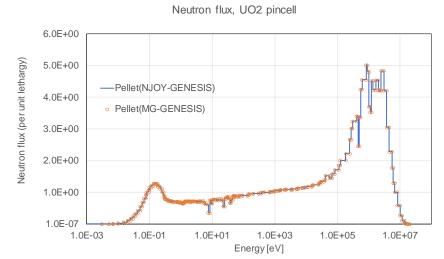
FRENDY Version

Development of FRENDY/MG^{*})

- FRENDY/MG is a multi-group cross section generator from ACE file.
 - Multi-group XS file is generated from combination of FRENDY Version 1 and FRENDY/MG.
 - FRENDY/MG can generate multigroup XS file from the existing ACE file.
 - FRENDY/MG will be released as a function of FRENDY Version 2 in the near future.
- *) A. Yamamoto et al., Trans. Am. Nucl. Soc., 122, pp.714-717 (2020). https://doi.org/10.13182/T122-32047

Major capabilities and features of FRENDY/MG (1/2)

- Focus on neutron cross section generation
 - Can treat fast continuous and thermal scattering law data
- Output format of multi-group cross sections
 - MATXS
 - GENDF (to be implemented)
- Weighting spectrum
 - 1/E, Fission+1/E+Maxwell (arbitral cutoff, temperature), or User input
- Ultra-fine group spectrum
 - Direct slowing down calculation or narrow resonance approximation
 - Automated ultra-fine energy grid refinement using ACE pointwise energy grid
 - Can treat a material including arbitrary number of isotopes; allows explicit consideration of resonance interference effect
 - Arbitrary mass weight of background moderator nuclide for evaluation of IR parameters

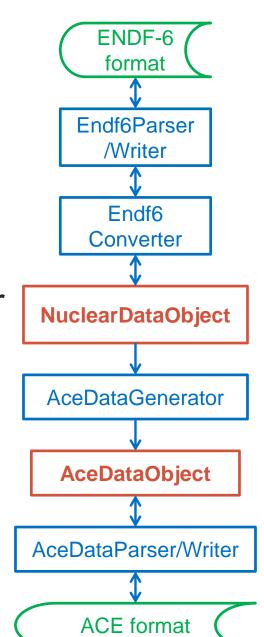

Major capabilities and features of FRENDY/MG (2/2)

- Angular/energy distribution
 - Can treat LAW=3, 4, 7, 9, 11, 44, 61 66 in an ACE file
 - Can treat all nuclides in JENDL-4.0, ENDF/B-VII.0, VII.1, B-VIII.0, JEFF-3.3, and TENDL-2019 (without Pu-238)
- Scattering matrices
 - Can treat all reactions including anisotropic scattering
 - $S(\alpha, \beta)$: free gas model, incoherent inelastic, incoherent elastic, coherent elastic
- Self-shielding for unresolved resonance region using probability table
- Fission spectrum, ν values
 - Prompt, Delayed (each group), Prompt + Delayed
- Arbitral multi-group energy structure
- Arbitral thermal cutoff

Verification of FRENDY/MG

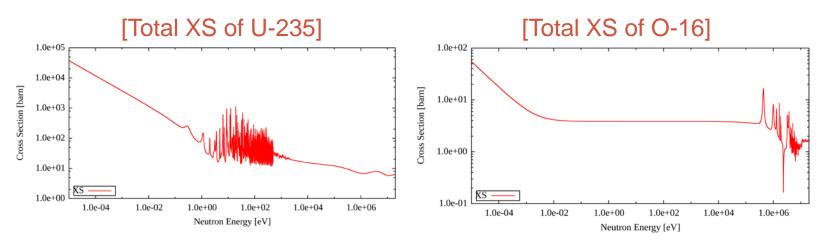
- Comparison of all processing results between FRENDY/MG and NJOY
 - All nuclides in JENDL-4.0, ENDF/B-VII.1, B-VIII.0, and JEFF-3.3
 - The processing results shows good agreement.
- Comparison of neutronics calculations
 - PWR pin-cell (5 wt% UO₂, 600 K)
 - MOC (GENESIS code), 172 gr.
 - $S(\alpha, \beta)$:free gas
- K-effective
 - NJOY : 1.4089250
 - FRENDY/MG:1.4089277

[Comparison of neutron spectrum]

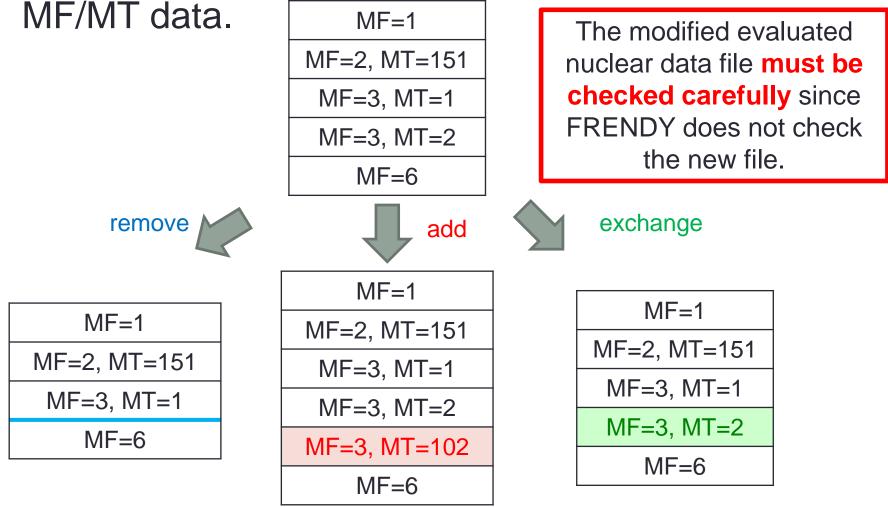


Other tools to handle ENDF and ACE files

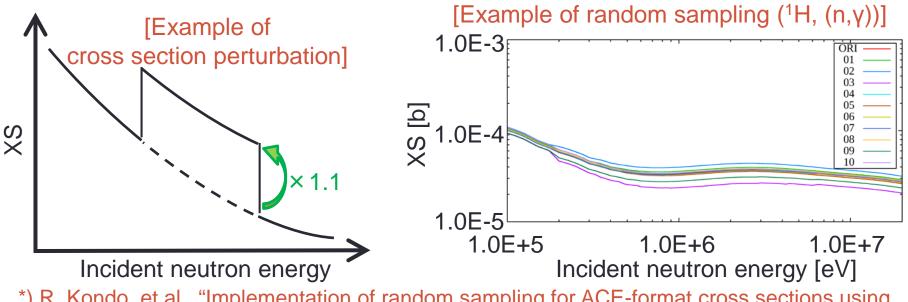
Handling ENDF/ACE files


- FRENDY has data object for ENDF and ACE files.
 - User can plot or modify the data in ENDF and ACE files without knowledge of data format.
- We prepared functions to plotting or modify ENDF/ACE files.
 - XS plotting tool for ENDF/ACE files
 - ENDF/ACE modification function
 - ACE file perturbation tool
 - For sensitivity analysis and uncertainty quantification using random sampling method

XS plotting tool for ENDF and ACE files

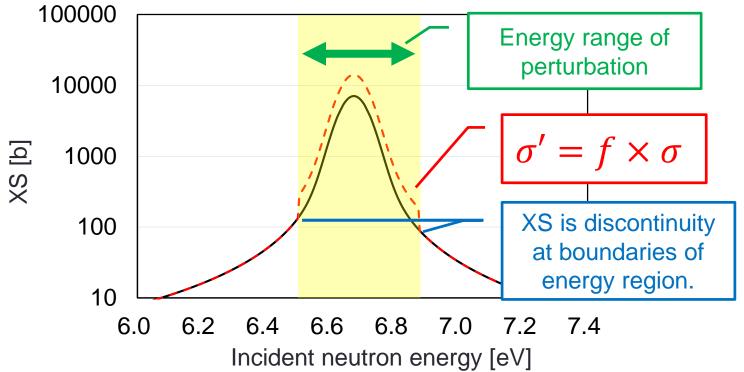

- This tool plots XS in ACE and ENDF files.
 - This tool contained in frendy_exercise.
 - ACE file plotting tool: frendy_exercise/write_ace_xs
 - ENDF file plotting tool: frendy_exercise/write_pendf_xs
 - This tool output one-dimensional table data.
 - GNUPLOT is used to plot the graph from this table data.

ENDF/PENDF modification tool


• This tool removes, adds, exchanges specified

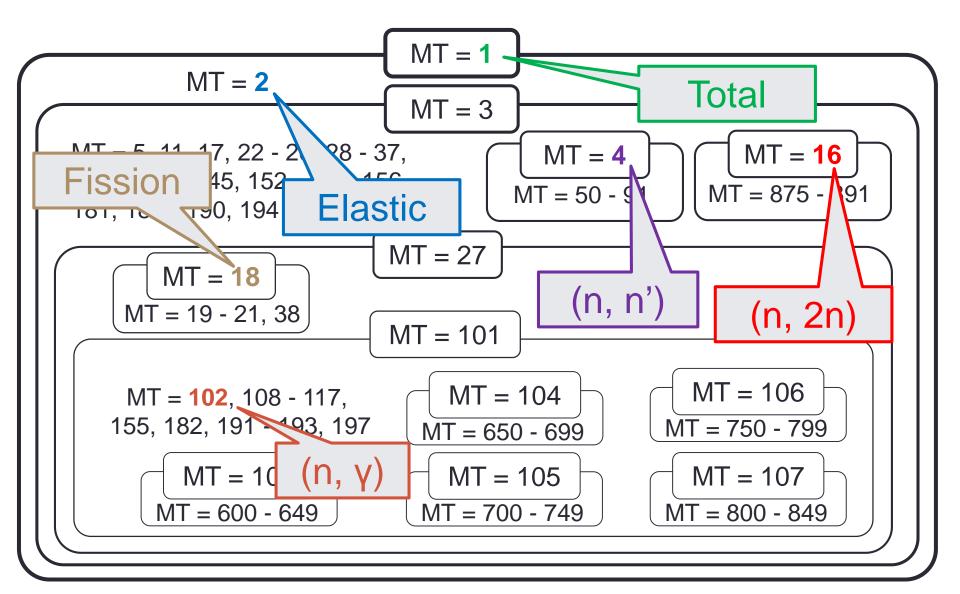
ACE file perturbation tool

- Implementation of a random sampling tool to perturb cross section and fission spectrum of ACE file^{*}).
 - User sets reaction type, energy region, and amount of perturbation.
 - Cross section and fission spectrum are randomly perturbed using random sampling mode.
- This tool is available from FRENDY Ver. 1.01.001.



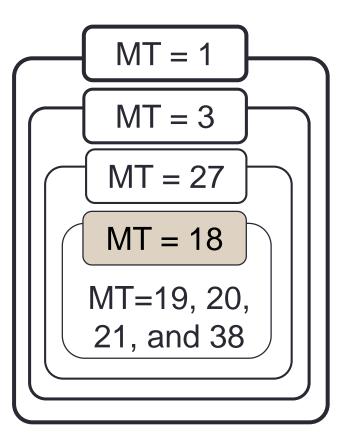
*) R. Kondo, et al., "Implementation of random sampling for ACE-format cross sections using FRENDY and application to uncertainty reduction," *Proc. M&C2019*, Aug. 25-29 (2019).

Perturbation of ACE file


- Perturbation tool decreases or increases XS or number of neutron per fission (v) or fission spectrum (χ).
 - XS or χ is multiplied by perturbation factor f within arbitrary energy range.
- This tools can be adopted to two analyses.
 - Sensitivity analysis with direct perturbation method
 - Uncertainty analysis with random sampling method

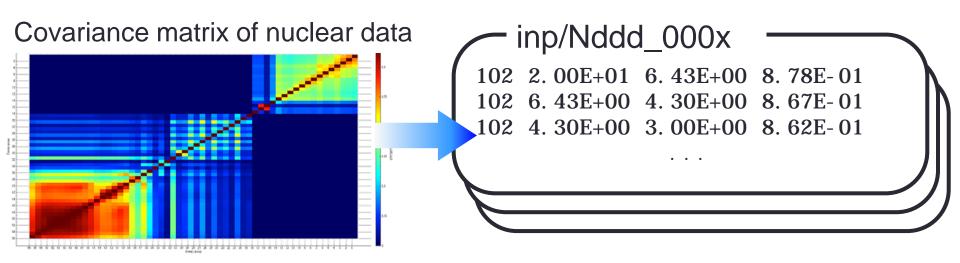
21

Relations of each reaction type



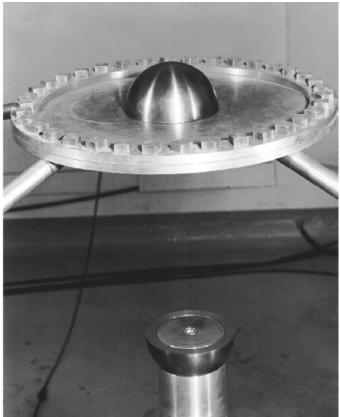
Example of fission XS perturbation

Perturbed fission XS (MT=18): $\sigma_{18}' = \mathbf{f} \times \sigma_{18}$ (Perturabtion factor: \mathbf{f})


MT18 contains MT=19-21 and 38. MT=19-21 and 38 are also perturbed. $\sigma_{19}' = \mathbf{f} \times \sigma_{19}, \ \sigma_{20}' = \mathbf{f} \times \sigma_{20}, \ \sigma_{21}' = \mathbf{f} \times \sigma_{21}, \ \sigma_{38}' = \mathbf{f} \times \sigma_{38}$

MT=1, 3, and 27 contain MT=18. XS of MT=1, 3, and 27 are modified. $\Delta \sigma_{18} = \sigma_{18}' - \sigma_{18}$ $\sigma_{1}' = \sigma_{1} + \Delta \sigma_{18}, \sigma_{3}' = \sigma_{3} + \Delta \sigma_{18}$ $\sigma_{27}' = \sigma_{27} + \Delta \sigma_{18}$

Random sampling


- User has to prepare covariance matrix.
 - We are now developing converter from GENDF file of NJOY/ERROR to input of random sampling tool.
- Generation of perturbation factors using random sampling method
 - See "/frendy_20yymmdd/tools/make_perturbation_factor/sample"

Uncertainty quantification using random sampling method [1] Godiva (HMF-001)

Geom etry	Sphere Radius: 8.7 cm		
Comp osition	U-235: 93.71 wt.% U-238: 5.27 wt.% U-234: 1.02 wt.%		
$k_{ m eff}$	1.000 ± 0.001		

- MCNP6.2
- Number of perturbed ACE file: 100
- Covariance data: 56groupcov7.1 (from SCALE6.2.3)
- MT=2,4,16,18,102,452, and 1018 (MT=452: v, MT=1018: χ)

Godiva [2]

[1] R. Kondo, et al., "Implementation of random sampling for ACE-format cross sections using FRENDY and application to uncertainty reduction," Proc. M&C2019, Aug. 25-29, Portland, USA (2019).
[2] ICSBEP NEA/NSC/DOC(95)03, Organization for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA) (September 2016).

Calculation results (k-effective uncertainty)

 $k_{\rm eff}$ -uncertainty due to all nuclides and reactions $\Delta k/k$ [%]

Sensitivity analysis (SA)	Random sampling method using		
of MCNP6.2	perturbation tool		
1.11	1.12 [0.98 – 1.24]		

Comparison of k_{eff} -uncertainty due to individual nuclide and reaction $\Delta k/k$ [%]

		SA (TSUNAMI-1D)	SA (MCNP6.2)	RS
U-235	(n,γ)	0.880	0.880	0.833
U-235	(n,n')	0.615	0.617	0.664
U-235	Elastic	0.295	0.295	0.305
U-235	Fission	0.269	0.269	0.329
U-235	Fission spectrum	0.253	0.261	0.260
U-234	Fission	0.118	0.118	0.130
U-235	v_{total}	0.085	0.085	0.093

Conclusions

- FRENDY Version 2 will be released in the near future.
 - FRENDY Ver. 2 generates multi-group XS file.
 - ACE file is used to generate multi-group XS file.
 - Treatment of GNDS format will be considered.
- We prepared many tools to plot or modify ENDF/ACE files using FRENDY.
 - XS plotting tool for ENDF/ACE files
 - ENDF/ACE modification tool
 - ACE file perturbation tool