LA-UR-21-22254

DeCE

the ENDF-6 data interface and nuclear data evaluation assist code

T. Kawano Theoretical Division Los Alamos National Laboratory

Introduction

Statistical Hauser-Feshbach codes play a central role in producing evaluated nuclear data files

They provide a complete set of cross sections, energy and angular distributions, including regions where no experimental data are available

Always external data are involved

- Model parameter and nuclear structure inputs
- Data evaluated independently

Technical Issues for Making ENDF from HF Codes

Model code outputs, e.g. by the Hauser-Feshbach theory, often need to be reorganized to follow the ENDF-6 protocol

- Exclusive or inclusive reaction representation
 - In the multiple particle emission case, theoretical calculations provide inclusive particle spectra, while ENDF requires exclusive spectra
 - This requires some complicated procedure inside the model codes
 - ENDF often mixes two representations
 - Exclusive below 20 MeV, and inclusive above
- Limited number of discrete levels
 - Cross sections to some levels may need to merge with the continuum
- Boundary between resonance and HF calculated regions
 - The averaged cross section in the resonance region agree with the HF calculation near the boundary

CoH₃: Coupled-Channels Hauser-Feshbach Code

CoH₃ Overview

- 45,000 lines C++ code
- Internal optical model / coupled-channels solver
- Compound nucleus decay by deterministic or Monte Carlo

Modules and Models

- Optical model
 - spherical and deformed (rotational or vibrational model)
 - DWBA for direct inelastic scattering
- Compound Reaction

- Moldauer's width fluctuation correction with realistic GOE parameters [NDS 118, 183 (2014)]
- Engelbrecht-Weidenmueller transformation with direct channels [PRC 94, 014612 (2016)]
- Gilbert-Cameron level density [JNST 43, 1 (2006)]
- Gamma-ray strength function
- Pre-Equilibrium Reaction
 - 2-component exciton model, (or FKK MSD/MSC still external code)
- Prompt Fission Neutron Spectrum
 - Advanced Madland-Nix model including pre-fission neutrons
- Direct/Semidirect Capture [PRC 75, 054618 (2007)]
 - Mean-Field Models (FRDM and Hartree-Fock-BCS) [EPJ 146, 12004 (2017)]

Multi-Particle Emission and Exclusive Cross Section

Nucleus object created for all the residual nuclei

Nucleus objects for (n,d) and (n,np) channels are different The current versioin of CoH₃ is slow at high energies, because a large number of CN object emerge

Level productions by Charged Particles

Two ways to store charged particle cross sections in ENDF

- MT 103 107 for (n,p), (n,d), etc
 - Level populations not given, discrete gamma-rays stored in MF6
 - Double-differential angular distribution only
- MT 600 849 for (n,p_0) , (n,p_1) , ... (n,α_{cont})
 - Level populations given, discrete gamma-rays are in MF12 and 14
 - Angular distribution given in MF6 (or MF4)

- CoH₃ produces both the data
 - However, users need to tell which option is used prior to calculate energy spectra

DeCE: ENDF-6 Formatted File Manipulation Code

Open source software to assist nuclear data production

- Similar functionality to CRECTJ6
- C++ code to edit ENDF files interactively
 - 25,700 lines
 - class libraries, ENDFLIB and ENDFIO
- Convert ENDF files into human readable X-Y table format
- Read another library or data and merge
- Delete/add/subtract/re-scale each sub-section in MF3
- Automatic generation of index (dictionary)
- Reconstruction of point-wise cross sections from resonance parameters (capability limited)
 - produce angular distributions from resonances too
- Some small utility codes (tools) available

https://github.com/toshihikokawano/DeCE

DeCE Package, Main Code and Class Libraries

NATIONAL LABORATORY EST. 1943

DeCE Showcase (I) Data Extraction

Interactive Mode

% dece W184.dat						
extract 3 4						
7.418400+4 1.823710+2	0	0	0	07437	3	4
0.000000+0-1.112100+5	0	0	1	987437	3	4
98 2				7437	3	4
1.118200+5 0.000000+0	1.200000+5	1.180380-1	1.300000+5	1.979930-17437	3	4
1.400000+5 2.537980-1	1.500000+5	-1	1.600000+5	3.460470-17437	3	4

5

0

10

Neutron Incident Energy [MeV]

15

20

DeCE Showcase (II) Fixing Header and DICT information

2.805900+4 5.842807+1 1 0 0.000000+0 0.000000+0 0 0 1.000000+0 2.000000+7 1 0 0.000000+0 0.000000+0 0 0 28-Ni- 59 LANL EVAL-0ct12 T.Kawano, A.Kahle DIST- REVI- ENDF/B-VII.1 MATERIAL 2828 REVIS ENDF/B-VII.1 MATERIAL 2828 REVIS ENDF-6 FORMAT Test for DeCE T. Kawano Nov. 2012 ************************************	0 0 0 0 0 0 02828 1451 1 0 62828 1451 2 10 72828 1451 3 50 02828 1451 4 20121031 2828 1451 6 ION 1 2828 1451 6 ION 1 2828 1451 7 2828 1451 8 2828 1451 8 2828 1451 9 2828 1451 9 2828 1451 10 ************************************	Line	numbers are tional now
2.805900+4 5.842807+1 0 0 2.805900+4 1.000000+0 0 0 1.000000-5 1.000000+4 1 2 just quit % dece -q -o Ni59new.dat Ni59.dat	2.805900+4 5.842807+1 0.000000+0 2.000000+0 1.000000+0 2.000000+0 28-Ni- 59 LANL EVAL-OC DIST- ENDF/B-VII.1 MATERIA INCIDENT NEUTRON DATA ENDF-6 FORMAT ************************************	1 0 0 0 1 0 0 0 t12 T.Kawano,A.Kahler REV1- L 2828 REVISION ************************************	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
output file Los Alamos	New Dictionary	1 451 2 151 3 1 3 1 3 4	203 103 118 103 103 19 269 02828 1451 20 32 02828 1451 21 39 02828 1451 22

EST.1943

<u>S</u>

DeCE Showcase (III) Arithmetic Operation

Add, subtract, multiply, and divide a sub-section by another sub-section

- sub-section means one of (MF,MT) segments
- Add partial cross sections (σ(n,n'), σ(n,2n), σ(n,nα), σ(n,γ)) and store it in the non-elastic scattering cross section σ_{nonel}
- Subtract σ_{nonel} from σ_{total} to re-calculate $\sigma_{elastic}$

EST.1943

DeCE Showcase (IV) Tools

Tools are external short programs that access ENDF data though ENDFLIB and ENDFIO

- decemf5: convert tabulated energy spectrum data into ENDF-6 format
- educemf6: convert CoH3 energy-angle spectrum output into ENDF-6
- decemacs: calculate Maxwellian energy average cross section (need PENDF)
- deceangdist: calculate scattering angular distributions from Legendre coefficients
- decephoto: calculate photonuclear reaction cross sections

DeCE Showcase (V) Resonance Reconstruction

DeCE Showcase (VI) Angular Distribution in RRR

EST.1943

DeCE Showcase (VII) Covariance Data

```
% dece -f32 n-092 U 233.endf
     [ 9222 : 32 : 151 ]
#
                            92 - 233
# Resonance Parameter Covariance Matrix
#
           NER
                           1 number of energy ranges
#
    Subsection
                            0
#
          Emin 1.000000e-05
#
          Emax 3.0000000e+02
#
           L'RU
                            1
#
           LRF
                            3
#
                             compatible flag 0:ENDF/B-V, 1:general case, 2:compact format
         LCOMP
                            2
                           0 0: no scattering radius uncertainty, 1: data given
#
           ISR
#
                         404 total number of resonances
          NRSA
#
                            5 number of digits
         NDIGT
                        2020 total number of resonance parameters
#
           NNN
#
                      223624 number of INTG data lines
            NM
#
                             number of parameters per resonance (ER, GN, GG, ...)
          MPAR
                            5
#
                    Uncertainty
                                   Correlation
      Parameter
    0 -1.060000e+03 1.9443396e-03 1000
    1 1.5240000e+00 9.5345341e-01
                                     -1 1000
    2 4.000000e-02 9.9999775e-01
                                      0
                                           0 1000
    3 2.3700000e-01 9.9671308e-01
                                      0
                                          -9
                                                0 1000
    4 -8.000000e+02 2.3649988e-03
                                      0
                                          -6
                                                0
                                                     0 1000
    5 1.3150000e+00 9.6446160e-01
                                      0
                                           0
                                                0
                                                     0
                                                           0 1000
    6 4.000000e-02 9.9999675e-01
                                         -61
                                                0
                                                    -2
                                                           1
                                                               -1 1000
                                      0
                                                  0
    7 -2.250000e-01 9.9634044e-01
                                      0
                                           0
                                                0
                                                           0
                                                                0
                                                                     0 1000
    8 -5.750000e+02 2.3354765e-03
                                           3
                                                0
                                                     0
                                                           0
                                                                0
                                                                    -7
                                      0
                                                                          0 1000
    9 8.0790000e-01 9.4186001e-01
                                          -1
                                                     0
                                                           0
                                                                0
                                                                     7
                                      0
                                                0
                                                                          0
                                                                               0 1000
```


Command	Operation
calc	calculate sum etc. of two sections in MF3
make4	create MF3,MT4 from MF51 - 91
duplicate / copy	copy section into another MT
read / multiread	read cross section data in an external file (X-Y table)
libread / multilibread	import a section or multiple sections from another ENDF-6 file
angdist / mutiangdist	read angular distribution data or Legendre coefficients
table	print internal data in a tabulated format
extract	extract a specified section and print as is
addpoint / delpoint	insert / delete one data point in a section in MF3
reconstruct	calculate cross sections from resonance parameters
index	print stored section index
set / unset	set / unset global options, such as energy unit, line number

ENDFLIB Class Library Example I: Print MF/MT

LABORATORY

EST.1943

ENDFLIB Class Library Example II: Read/Print Entire File

Connecting CoH₃ and DeCE to Create ENDF

CoH₃ produces some interim data files, and DeCE processes them

However, DeCE is designed to accept any data files (X-Y table)

User Community (yet small ...)

Feedback

- Bugs occasionally reported by users
 - Sep. 2020, MF3 MT50 was missing for charged-particle reactions
 - The most recent one was Mar. 2021 by IAEA
 - See ChangeLog for all changes

Recent requests

- Responded
 - Scaling factor applied to P₁ Legendre coefficients
 - Some special cases for charged-particle reactions
 - Print-out redirect by "set Output" command
- Users' pull-request
 - Handling very large/small numbers, like 10¹²³, 10⁻¹²³
 - SAND-IIa 725 group extension
- Not resolved yet (or not considered)
 - Windows version
 - Data visualization package

Concluding Remarks

LABORATORY

EST.1943

CoH₃ Coupled-Channels Hauser-Feshbach code

- The statistical Hauser-Feshbach code provides a complete nuclear data above the resonance range
- CoH₃ produces several interim files cross section, angular and energy distributions, etc. for creating a new ENDF file by DeCE

DeCE ENDF data manipulation code

- DeCE facilitates ENDF data file manipulation and production
- Essential tool for producing new ENDF files at LANL
- Document and source code available at:
 - https://doi.org/10.1080/00223131.2019.1637797
 - https://github.com/toshihikokawano/DeCE

