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Artificial intelligence is the science and engineering of making
computers behave in ways that, until recently, we thought required

human intelligence — Andrew Moore, Forbes Magazine 2017
. : . Google DeepMind's
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Why deep learning INPROVEMENTS IN COMPLITER VISION
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How do data science techniques scale with amount of data?




Deep learning / Neural Network
primer



Building blocks of deep neural networks

*  Model/architecture

* Data

* Loss function and optimizer
* Compute
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Building blocks of deep neural networks

*  Model/architecture
Data
Loss function and optimizer

Compute
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When you hear the term deep learning, just
think of a large deep neural net. Deep refers to
the number of layers typically and so this is kind
of the popular term that’s been adopted in the
press. | think of them as deep neural networks
generally.

Jeff Dean, Google Senior Fellow in the Systems &
Infrastructure Group
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Building blocks: model layer equations

Layer equation Fully-connected  Nonlinear activation

Neural Network functions
y =oc(Wx + b) |

W Sigmoid !

1 0(%) = te== |

Layer J Input [=] tanh 1
outpuf _— tanh(a) —
Nonlinear  Weights/ -

activation biases RelLU
max (0, z)
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Mehta, V., et. al. (2020). http://arxiv.org/abs/2006.12682
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Why go deep?
Learn hierarchical, composable features

Deep Learning =,Learning Hierarchical Representations Important that these
features are learned
M It's deep if it has more than one stage of non-linear feature transformation jOi ntIy, i.e.can not train
e | yywe |l =y Il e layers separately and
ow-Leve id-Leve igh-Leve rainable
Feature | | Feature | | Feature | | Classifier | get the same result
Vi 2 | ¥

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Features, representations, latent space

nput Layer Final Representation Layer

One way to view deep NN is that
they learn “features” or
“representations”, with a final
layer for classification or
regression

The feature space also often
referred to as the latent space; csture Space Transfocmsion (FS1 Classifier Construction (CC)
dat_a Compressed toa Spéce https:/towardsdatascience.com/overparameterized-but-
which latent random variables generalized-neural-network-420fe646c54¢

define




Deep learning enables working with complex, high-

dimensional data

Physicist

Classic
ML

Input
;mqgneﬁcs)

li=

fu((f3(f2(f1(M))))...)

Deep
Neural
Networks
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) Low pass filter i EFIT _Inductance
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Overparameterization and generalization

Current largest neural networks nearing 1
trillion parameters

Human brain has 100 trillion synapses

Number of learnable parameters in modern
neural networks is often much larger than
the training data points

Yet they still can generalize well (17?)
Different from traditional experience with
statistics e.g. regression

Still open question as to why and how
— Role of engineering

currently critical in deep NN




Building blocks of deep neural networks

Model/architecture
* Data
Loss function and optimizer

Compute

@ Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 13



“Datals
the food




Building blocks: data

Image Label

Due to large number of parameters, deep neural

networks are data hungry. Cat

How much data do you need for your problem?

Answer is always “it depends” (complexity of the problem,
size of the network, etc.), but more is (almost) always better

Rule of thumb ~5k examples per categoryfor classification } 3 Dog
Typical “supervised learning” setup involves gathering s .
input data and the targeted output data (e.g. input:

pictures of cats/dogs; output: label for each picture }
whether cat/dog)

Cat

» Dog
‘L_ 2




Training/validation/test split

Underfitting Overfitting

Loss

early stopping ~___} Epochs
))  Nov 29, 2021

Dataset splitting

Training

Validation Test

validation

training

Trains model, used to

Testfinal trained model

update gradients/weights on out-of-sample data

v

Monitor performance as
training progresses on out-of-
sample data, validates
model/hyperparameter
choices, never updates
gradients/weights

R. Michael Churchill, IAEA FDPVA 2021 16



Building blocks of deep neural networks

Model/architecture

Data
* Loss function and optimizer

Compute
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...what we want s a
machine that can learn

from experience.

Alan Turing, 1947

"s Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021
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THIS IS A NEURAL
NETWORK.

IT MAKES MISTAKES.
IT LEARNS FROM THEM.

Q
d
O
O
o)
O
ON
O

BE LIKE A NEURAL
NETWORK.




L
Building blocks: Loss function for
gradient-based optimization

Goal of NN training is to minimize the loss function for the dataset

fo(w) = O (70 (172 (L (12 (1P (@)

=1 (0 (0 ()
outpu I ‘ outpu
Loss '%( fo(x) —y)>  MSE loss

function

C
l(fo(x),y) = Z y; log fo(x) Cross-entropy loss

Sho

L -

NN weight

update liLearning rate
ESQQ\ N 0« 6 — 772_:;
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Backpropagation uses chain rule to

determine how weights should z8) = wkyk=b 4 pk)

change given an outputloss.

Propagate error backwards, av?/ﬁm — @aﬁc) , {y(k—l
. . ' Z
calculating weight updates
ol ol

Most deep learning frameworks use
autodifferentiation to accurately

obE) — 9z(k)

calculate gradients, no need to ot _ [W(k)r o0

specify by hand Oz~ Oz

Rumelhart, “Learning representations by back-propagating errors”, Nature 1986
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Stochastic Gradient Descent (SGD)

0 «—0—n— _
Performs optimization steps using L 00
part (Or ”batCheS”) Of dataset for Stochastic Gradient Descent Gradient Descent
gradient (instead of entire dataset) N S
“stochastic” because random samples
n = Nba,tch, n=AN

used in mini-batches

Spend more time processing more (Nbaten < N)

data instead of minimizing Variants most commonly
optimization steps used:

SGD with momentum
Faster co nvergence

“the best optimization algorithms are
not necessarily the best learning
algorithms” [Bottou, NeurlPS 2007]

[Ada m J
*  Easydefault hyperparameters




Hyperparameter tuning

Hyperparameter Approximate sensitivity

Learning rate High
Many parameters chosen (not learned), called e Lo
“ ” Other optimizer params

hyperparameters (0. Adam betat) Low

Batch size Low
. ] Weight initialization Medium

Many ways to find optimal hyperparameters Loss function High
Model depth Medium

Grid search can be employed to scan, but often too expensive. Layer size High
Heuristics most often employed (“what worked before”) (e_Lg""},’if;,’;’{;;'i‘:e, Medium
Bayesian optimization (with several packages e.g. RayTune and Msahtokrequirzarion L]

Nonlinearity Low

Optuna implementing) can find optimal hyperparameter setting with

fewer training runs

tune




Example: Hyperparameter tuning of learning rate

Learningrate (LR) is one of the foss
most important
hyperparametersto tune

low learning rate

For each LR, train the neural

network over several epochs,
monitor training loss to select
Optimal LR good learning rate

high learning rate

\

>

epoch

Loss: measure of the “error”
1 Epoch = 1 pass through ALL data



Example: Hyperparameter tuning of learning rate

With the optimal LR, the training Underfitting  Overfitting
loss will continue to drop

(usually) when the validation
loss begins to rise, the neural Loss
network begins to overfit

Early stopping of the training is

often used to save the neural .
. : ocns

network at the optimal level early stopping ~__/ P

Loss: measure of the “error”
1 Epoch = 1 pass through ALL data

training




Building blocks of deep neural networks

Model/architecture
Data
Loss function and optimizer

* Compute
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GPUs are (mostly) the driver for compute
improvements in deep neural networks

Specifically CUDA parallel programming model made it
easy to leverage GPUs for parallel processing,
accelerating the tensor operations needed in neural
networks

| NVIDIA.
CUDA

Many frameworks exist to implement deep neural

networks; all make it seamless to leverage GPUs (no O PyTO rCh
CUDA programming required) -

Key for fastest performance is pipelining the workflow
to ensure GPUs don’t sitidle "

e.g. load next data batch using CPUs concurrent with GPU TensorFlow
operations on other batch of data with pin_memoryin Pytorch

p



Pytorch example

dataset = MyDataset(filepath)

dataloader = DatalLoader(dataset, batch_size=32, shuffle=T 2, num_workers=4)
model = resnet5@(pretrained=True)
optimizer = Adam(model.parameters(), 1lr=0.001)

ch.cuda.is_available() el

ch in range(1, 100):

i, (images, labels) in enumerate(dataloader):

images = images.to(device); labels = labels.to(device)
outputs = model(images)

loss = CrossEntropyLoss() (outputs, labels)

optimizer.zero_grad()
loss.backward()

Written by:

GitHub
Copilot

optimizer.step()

if 1 % 100 == 0:
print(loss.item())




Inductive bias

“Encode our knowledge and assumptions about the world”



B A B
Weight Agnostic Neural Networks

ADAM GAIER DAVID HA June 12 Download NeurlPS 2019
Google Brain  Google Brain 2019 PDF Slides

* Instead of updating weights,
modify structure of neural
network

- Showed that with the right
structure, learning was
possible, despite single

parameter weight
“Not all neural network architectures are created equal, some perform much better
than others for certain tasks. But how important are the weight parameters of a
neural network compared to its architecture?”
ﬁ Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 31
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Convolutional structure in neural networks a strong

inductive bias for locality

Layer equation
y = oc(Wx + b)

CNN weight matrix sparse connectivity
enforces translation invariance, useful for
natural images. But also cons, e.g. one con
is the "Picasso effect”, default CNNs can’t
distinguish global and relative relationships

“Face” “Face”

/ —~ |

fle= .
O O

T \ /
o ;

, SRR A e

C

W
Fully-connected [E_—}
Neural Network \——— a
Convolutional ['——__ J
Neural Network =

Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

convad maxpool convad maxpool

fully fully
Input + RelLU + RelU

connected  connected



Architecture choices have dramatic effect on loss
landscape -> ease of training

Rio4Ecs B>l Ry |
6", Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 33

Li, H., et. al.(2018). https://arxiv.org/pdf/1712.09913. pdf



Architectures and Techniques
Related to Scientific
Deep Neural Networks

f lori )
carentmodelo il Papers With Code

https://paperswithcode.com/



Sequential Models



Sequential models:
Long Short-Term Memory (LSTM)

Sequential models solve time-
dependent problems (e.g. audio
transcribing, text translation,
time-series prediction, etc.)

iy 1 @ ition
:I \ s | OutputGate :
X; : }—‘ = vector connections
LSTM CELL I

An LSTM is a type of recurrent neural network that addresses the vanishing gradient problem in
vanilla RNNs through additional cells, input and output gates. Intuitively, vanishing gradients are
solved through additional additive components, and forget gate activations, that allow the gradients
to flow through the network without vanishing as quickly.

Hochreiter and Schmidhuber, Neural Computation 9 (8): 1735-1780, 1997

G



e
Sequential mOdels: Decoding time step: 1(2)3 4 5 6 outeut |
Transformer

( )
Kencdec  Vencdee ( Linear + Softmax )
ENCODERS DECODERS ]
\ J
EMBEDDING t t + [}
WITHTIME ~ (IT11 [T [ T
SIGNAL
EMBEDDINGS o O O I
INPUT Je suis étudiant PREVIOUS

OUTPUTS
A Transformer is a model architecture that eschews recurrence and instead relies entirely on an
attention mechanism to draw global dependencies between input and output. Before Transformers,
the dominant sequence transduction models were based on complex recurrent or convolutional
neural networks that include an encoder and a decoder. The Transformer also employs an encoder
and decoder, but removing recurrence in favor of attention mechanisms allows for significantly more
parallelization than methods like RNNs and CNNs.

ﬁ__} Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 37



L
Sequential models:
Transformer cont., the attention mechanism

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting / matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to Layer: Attention:
R with weight matrices ~ Q/K/V matrices produce the output of the layer .
X Wo0 The_ The_
K . .
Thinking e Wo ; Qo animal_ animal_
Machines H Wo = Ko didn_ didn_
[ H Il... Vo BE‘E‘ ' .
H LT - -
L t t
W@ Cross_
* In all encoders other than #0, A WqK Qi the_
we don't need embedding. g WiV K1 street
We start directly with the output oy ||... Vi H}} b -
of the encoder right below this one H ecausa_
it_
R eee was_
[
WK Q- tire
w7V d

FrT
T v BB

KT
Attention(Q, K, V) = softrnax( oK ) Vv

Vi
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Sequence models for predicting influenza spread

Transformer can often benefit from better modeling of long-term

i dependencies vs recurrent architectures
. B i (CNNs with dilated convolutions also designed for long-term
5 dependencies,seee.g. TCN [Bai 2018])
" S ',’ £ " =S LLLl l\.rDP\.r\.rL W UadClllc LIIVUCl.
it T e § } Model Pearson Correlation | RMSE
Fix-length time window 0’769 1020
ARIMA (+0 %) (-0 %)
0.924 0.807
LST™M (+19.9 %) (-20.9 %)
0.920 0.642
Seq2Seq-+attn (+19.5 %) (-37.1%)
- Transf 0.928 0.588
Tme g ranstormer (+20.7 %) (-42.4 %)

Wu, “Deep Transformer Models for Time Series Forecasting” https://arxiv.org/pdf/2001.08317.pdf




Graph Neural Networks



Graph Neural Networks

*  GNNs operate on graph structures with -/'”'t'aéq'fée{oonfé”ebfiiﬁﬁgi " oo

nodes/edges /
*  Perform better with fewer layers IETE \ch-Jr B;hf ) , Vk>(

kth layer

embedding non-linearity (e.g.,
of v ReLU or tanh)

RelLU
average of neighbor’s

previous layer embeddings

Savannah Thais, Graph Neural Networks

https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/

https://theaisummer.com/gnn-architectures/

?)E; Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 4



https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/

L
Graph Neural Networks for learning N-body
problems and dark matter is cosmology

Dataset Model with Ext'ract to ‘
Graph Neural Network Symbolic Equation

| — a; = % Do —rig)y
t i

Known spring law

Simple Particles

Encodrage Low-Dimensionality
_ Representation

(N ] /
@
. e e\l 2
Predict Properties ) Cy+ M;

A )
) (Si =Lt Cy + CgMi ; C5 + 05(7‘,;]‘)07

Unknown Dark Matter
overdensity equation

Detailed
Dark Matter Simulation

M. Cranmer, https://astroautomata.com/paper/symbolic-neural-nets/
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Iterative

Learned one-step simulator rollout

(. Cloth mesh nodes
(  Obstacle mesh nodes

—— Mesh-spaceedges EM
——  World-space edges E"

M
Mesh-space messages e'i]-

—

W
«  World-space messages e
—

passing x L Decoded accelerations Pi

https://sites.google.com/view/meshagraphnets
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https://sites.google.com/view/meshgraphnets

PDE solving



Equivariant Neural Networks

Uniform Motion _

Target ResNet Equym

Modeling PDEs such as Navier-Stokes can
be made more accurate by using NN -
architecture which guarantee symmetries =
of the underlying PDE are satisfied

Ex: Ocean data flow prediction enforcing
Uniform Motion performs much better
over long time

Robin Walters, "Incorporating Symmetry into Deep Dynamics Models
for Improved Generalization." ICLR 2021.

.



Solving on coarse grain grids, leveraging
differentiable simulators

Ou 1 o
: S =-V-@u)+ —-Vu— -Vp+f
Hybrid approaches can use NN to target ot (et gV u— Vot
specific parts of numerical PDE V-u=0,
Training dataset Generalization tests

Y% ~
SN A%

D

8

5

¢ e |
S
et )

O »

3 s

o

algorithms (e.g. local operator for
convective fluxes) !il ');_‘,

Learn to replicate high-res simulations I e oty

o

on coarse, limited grid, inference on — 1 ............ |
fine, expanded grid
With a fully differentiable simulator, can

optimize end-to-end through multiple
steps of simulation. Help stability.

Old velocity
v(t)
Convolutional
neural network
Filter
Divergence
Explicit timestep

constraints
Pressure projection

.

Kochkov, PNAS 2021

External forcing F(t)

New velocity
v(t + At)




Learning operators instead of functions

Neural Operator can approximate any continuous operator

[ Kx, pvdy

Replacing linear function with ~ #: AR=RY S URSRT
an integral operator enables

better generalization to ol s _,-_,.._, i
function operator function
unseen data

e.g. Fourier Neural Operator

Neural Network can approximate any continuous function

(FNO) for fluid flow, 1000x f:R"— R , Aveb

faster

NOV 45 2021 R. Michael Churchill, IAEA FDPVA 2021

Feature —> JRRRRES I o o — Output
Vector function Vector
\ \ Anima Anandkumar, GTC2021

K(x,y)

47



Generative modeling



Generative architectures

Learn joint-distribution p(x,y) instead of
discriminative distribution p(y| x)

Generative Adversarial Networks
Training data

mm @W Classify fake images vs real images
> L { )
N o f q '

Discriminator > real/fake? |

Latent vector z Generator s

o o e - - - - -

Generate fake samples to fool the discriminator

Variational Autoencoder (VAE)

encode > decode >
Inference Generative

N\

Input = Reconstructed
Image I “"'; Image
' PR
SalSS
input output

Distribution




Normalizing flows for scientific generative

mOdellng f:R" > R" such that xzf(z) and z:f_l(x)
GAN and VAE don’tlearn probabilit py (x)=p, (/") det{afax(x)}‘—pz (Z)det[gij
density p(x) of data directly
.. : of

Normalizing flow-based algorithms log py (x) =log p, (z) ~log det[a_z]‘
learn p(x) explicitly, by design being Used in inverse molecule design
invertible (and cheaply for to learn from molecule
computational reasonableness) database, and then invert to

Can more accurately capturedata specify properties to generate

distribution new molecules HoH

H2N\O/N\N/N\N/O\ O/NH2

https://www.scirp.org/journal/paperinformation.aspx?paperid=112258
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html



Pretraining models
("Foundation models")



Large-scale pretraining unsupervised leads to
general, flexible neural networks

Train on unlabelled data,
simply predicting the next zeoshot  Onestet - Fewdter
word in the sentence

GPT-3 showed scaling the &
parameter size of transformer
(with required data) results in
flexible neural networks, that ./~
are few-shotlearners

175B Params

cy (%)

Accura

1.3B Params

Number of Examples in Context (K)

Brown, https://arxiv.org/abs/2005.14165



Pre-training speech recognition models with contrastive
loss drastically reduces needed labelled data

Amount of
labeled
data used

10T [ AC?O‘WM e
labeled 2 Ca'mn:t C * ﬁ r T *

T I=

(test-other)

Quantized
representations Q
Latent speech Z
representations
-
r4 ; > 5 f""’"
&"9\* \Qu“ qi&'v? \,b"@'ls’c' «P"? ..xv_,p
& & Qo aw vaveform X
LLibrispeech benchmark, WER on test-other *

Baevski https://arxiv.org/abs/2006.11477

Word Error Rate

8
6
4
2
0
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SUMMARY



Fusion AT/ML
researcher FUSION ENERG_Y

-\
L\l 1 =




Backup
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Relational Inductive Biases

coo /
55~ (oo

o Independence Locality

ANGAN

Attention Mechanisms Transfer Learning

U E
B, e

A

g

Contrastive Methods

J

Align/Repel

S e ™

OG-0 0=Q P o (Bl (Doee) § [0

O O O O O_'O Unsupervised Supervised e :
Sequentiality Specified Pretraining Pretraining

< >
Explicit Implicit

Capacity-Focused

6} Nov 29, 2021

Task-Focused

https://sgfin.github.io/2020/06/22/Induction-Intro/

R. Michael Churchill, IAEA FDPVA 2021
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Control / RL



Structure (“inductive bias”) can be included in

neural networks to further enhance performance

®)

Nov 29, 2021

"Physics”-informed

Vs

=

Residual Prediction
P

~,

J

Prior Knowledge ODEs

t=0(y—x)
gx)= <y =2z(p—2)—

z'=a:y—3z

N

y}/

R. Michael Churchill, IAEA FDPVA 2021

Mehta, V., et. al. (2020). http://arxiv.org/abs/2006.12682
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Prediction and
detection

Code Acceleration

ﬁ}"_ Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021 60



Fusion plasmas have a range of phenomena,
manifest over multiple time and spatial scales

Time [s] 41010 108 [106 10+ 10'21 100 102 10)

Space [m] [106 04 1 O"I'ty J 100 102
i
Transport Currentdiffusion




Accelerating massively parallel XGC code with
machine learning allows including more physics

% =Y Cap(fa f3) Deep Neural Network
col b )
inse [favu (B o) B e, ARRTE
_ d . _/’ i i
Z 87r60ma [[ Ve ( v fb man
LossT
d? a ab(fa fp) | = — d’ a¥ " Ja .
;f v |:qb Zb:c ([ fb)] %:f VoaV - Jap fi+5ﬁ [[ |(I;SZS }[ Conske);\;atlon ]}:
Target 7y

Person
Bicycle
Background

'ﬁf,; Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021
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