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Artificial intelligence is the science and engineering of making 

computers behave in ways that, until recently, we thought required 

human intelligence – Andrew Moore, Forbes Magazine 2017
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Deep learning / Neural Network 
primer
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Building blocks of deep neural networks

• Model/architecture

• Data

• Loss function and optimizer

• Compute

5
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Fully-connected 
Neural Network

Building blocks: model layer equations
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Why go deep? 
Learn hierarchical, composable features

9

Important that these 
features are learned 
jointly, i.e. can not train 
layers separately and 
get the same result
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Features, representations, latent space

• One way to view deep NN is that 
they learn “features” or 
“representations”, with a final 
layer for classification or 
regression

• The feature space also often 
referred to as the latent space; 
data compressed to a space 
which latent random variables 
define

10

https://towardsdatascience.com/overparameterized-but-
generalized-neural-network-420fe646c54c
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Deep learning enables working with complex, high-
dimensional data
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Overparameterization and generalization

• Current largest neural networks nearing 1 
trillion parameters
• Human brain has 100 trillion synapses

• Number of learnable parameters in modern 
neural networks is often much larger than 
the training data points
• Yet they still can generalize well (!?)

• Different from traditional experience with 
statistics e.g. regression

• Still open question as to why and how

12

→ Role of engineering 

currently critical in deep NN
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Building blocks of deep neural networks

• Model/architecture

• Data

• Loss function and optimizer

• Compute
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“Data is 

the food 

for AI”
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Building blocks: data 

• Due to large number of parameters, deep neural 
networks are data hungry. 

• How much data do you need for your problem?
• Answer is always “it depends” (complexity of the problem, 

size of the network, etc.), but more is (almost) always better

• Rule of thumb ~5k examples per category for classification

• Typical “supervised learning” setup involves gathering 
input data and the targeted output data (e.g. input: 
pictures of cats/dogs; output: label for each picture 
whether cat/dog)

15
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Training/validation/test split

16

Training Validation Test

Trains model, used to 
update gradients/weights

Monitor performance as 
training progresses on out-of-
sample data, validates  
model/hyperparameter 
choices, never updates 
gradients/weights

Test final trained model 
on out-of-sample data

Dataset splitting
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Building blocks of deep neural networks

• Model/architecture

• Data

• Loss function and optimizer

• Compute
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Building blocks: Loss function for 
gradient-based optimization

20
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Backpropagation: the learning algorithm

• Backpropagation uses chain rule to 
determine how weights should 
change given an output loss.  
Propagate error backwards, 
calculating weight updates

• Most deep learning frameworks use 
autodifferentiation to accurately 
calculate gradients, no need to 
specify by hand

21

Rumelhart, “Learning representations by back-propagating errors”, Nature 1986
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Stochastic Gradient Descent (SGD)

• Performs optimization steps using 
part (or “batches”) of dataset for 
gradient (instead of entire dataset)

• “stochastic” because random samples 
used in mini-batches

• Spend more time processing more 
data instead of minimizing 
optimization steps

• “the best optimization algorithms are 
not necessarily the best learning 
algorithms” [Bottou, NeurIPS 2007]

22

• Variants most commonly 
used:
• SGD with momentum 

• Faster convergence

• Adam
• Easy default hyperparameters
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Hyperparameter tuning

• Many parameters chosen (not learned), called 
“hyperparameters”

• Many ways to find optimal hyperparameters

• Grid search can be employed to scan, but often too expensive.

• Heuristics most often employed (“what worked before”)

• Bayesian optimization (with several packages e.g. RayTune and 
Optuna implementing) can find optimal hyperparameter setting with 
fewer training runs

23
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Example: Hyperparameter tuning of learning rate

• Learning rate (LR) is one of the 
most important 
hyperparameters to tune

• For each LR, train the neural 
network over several epochs, 
monitor training loss to select 
optimal LR

24

Loss: measure of the “error”
1 Epoch = 1 pass through ALL data
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Example: Hyperparameter tuning of learning rate

• With the optimal LR, the training 
loss will continue to drop

• (usually) when the validation 
loss begins to rise, the neural 
network begins to overfit

• Early stopping of the training is 
often used to save the neural 
network at the optimal level

25

Loss: measure of the “error”
1 Epoch = 1 pass through ALL data
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Building blocks of deep neural networks

• Model/architecture

• Data

• Loss function and optimizer

• Compute
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The biggest lesson that can be read from 70 years of AI 

research is that general methods that leverage 
computation are ultimately the most 
effective, and by a large margin. …Seeking an 

improvement that makes a difference in the shorter term, 
researchers seek to leverage their human knowledge of the 
domain, but the only thing that matters in the long run is 
the leveraging of computation... the human-knowledge 
approach tends to complicate methods in ways that make 
them less suited to taking advantage of general methods 
leveraging computation.

-Richard Sutton “The Bitter Lesson”, 2019

27
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GPUs are (mostly) the driver for compute 
improvements in deep neural networks

• Specifically CUDA parallel programming model made it 
easy to leverage GPUs for parallel processing, 
accelerating the tensor operations needed in neural 
networks

• Many frameworks exist to implement  deep neural 
networks; all make it seamless to leverage GPUs (no 
CUDA programming required)

• Key for fastest performance is pipelining the workflow 
to ensure GPUs don’t sit idle
• e.g. load next data batch using CPUs concurrent with GPU 

operations on other batch of data with pin_memory in Pytorch
28
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Pytorch example

29

Written by:
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“Encode our knowledge and assumptions about the world”

Inductive bias
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• Instead of updating weights, 
modify structure of neural 
network

• Showed that with the right 
structure, learning was 
possible, despite single 
parameter weight

31

“Not all neural network architectures are created equal, some perform much better 
than others for certain tasks. But how important are the weight parameters of a 
neural network compared to its architecture?”

https://arxiv.org/abs/1906.04358
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Fully-connected 
Neural Network

Convolutional structure in neural networks a strong 
inductive bias for locality

32

Convolutional 
Neural Network

W
Layer equation

CNN weight matrix sparse connectivity 
enforces translation invariance, useful for 
natural images. But also cons, e.g. one con 
is the ”Picasso effect”, default CNNs can’t 
distinguish global and relative relationships

“Face” “Face”



Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021

Architecture choices have dramatic effect on loss 
landscape -> ease of training

33

Li, H., et. al.(2018). https://arxiv.org/pdf/1712.09913.pdf

With Residual connectionsNo Residual connections
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Architectures and Techniques 
Related to Scientific 

Deep Neural Networks

https://paperswithcode.com/

Resource for exploring 
current models:
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Sequential Models
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Sequential models: 
Long Short-Term Memory (LSTM)

• Sequential models solve time-
dependent problems (e.g. audio 
transcribing, text translation, 
time-series prediction, etc.)

36

Hochreiter and Schmidhuber, Neural Computation 9 (8): 1735-1780, 1997
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Sequential models:
Transformer

37
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Sequential models:
Transformer cont., the attention mechanism

• transformer

38
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Sequence models for predicting influenza spread

39

Wu, “Deep Transformer Models for Time Series Forecasting” https://arxiv.org/pdf/2001.08317.pdf

Transformer can often benefit from better modeling of long-term 
dependencies vs recurrent architectures
(CNNs with dilated convolutions also designed for long-term 
dependencies, see e.g. TCN [Bai 2018])
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Graph Neural Networks
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Graph Neural Networks

• GNNs operate on graph structures with 
nodes/edges
• Perform better with fewer layers

41

https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/

Savannah Thais, Graph Neural Networks

https://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
https://theaisummer.com/graph-convolutional-networks/
https://theaisummer.com/gnn-architectures/
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Graph Neural Networks for learning N-body 
problems and dark matter is cosmology

42

M. Cranmer, https://astroautomata.com/paper/symbolic-neural-nets/
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https://sites.google.com/view/meshgraphnets

https://sites.google.com/view/meshgraphnets
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PDE solving
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Equivariant Neural Networks

• Modeling PDEs such as Navier-Stokes can 
be made more accurate by using NN 
architecture which guarantee symmetries 
of the underlying PDE are satisfied

• Ex: Ocean data flow prediction enforcing 
Uniform Motion performs much better 
over long time

45

Robin Walters, "Incorporating Symmetry into Deep Dynamics Models 
for Improved Generalization." ICLR 2021.
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Solving on coarse grain grids, leveraging 
differentiable simulators

• Hybrid approaches can use NN to target 
specific parts of numerical PDE 
algorithms (e.g. local operator for 
convective fluxes)

• Learn to replicate high-res simulations 
on coarse, limited grid, inference on 
fine, expanded grid

• With a fully differentiable simulator, can 
optimize end-to-end through multiple 
steps of simulation. Help stability.

46

Kochkov, PNAS 2021
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Learning operators instead of functions

• Replacing linear function with 
an integral operator enables 
better generalization to 
unseen data

• e.g. Fourier Neural Operator 
(FNO) for fluid flow, 1000x 
faster

47

Anima Anandkumar, GTC2021
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Generative modeling
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Generative architectures

• Learn joint-distribution p(x,y) instead of 
discriminative distribution p(y|x)

49

Variational Autoencoder (VAE)

Generative Adversarial Networks
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Normalizing flows for scientific generative 
modeling

• GAN and VAE  don’t learn probability 
density p(x) of data directly 

• Normalizing flow-based algorithms 
learn p(x) explicitly, by design being 
invertible (and cheaply for 
computational reasonableness)
• Can more accurately capture data 

distribution

50

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://www.scirp.org/journal/paperinformation.aspx?paperid=112258

• Used in inverse molecule design 
to learn from molecule 
database, and then invert to 
specify properties to generate 
new molecules
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Pretraining models 
(“Foundation models”)
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Large-scale pretraining unsupervised leads to 
general, flexible neural networks

• Train on unlabelled data, 
simply predicting the next 
word in the sentence

• GPT-3 showed scaling the 
parameter size of transformers 
(with required data) results in 
flexible neural networks, that 
are few-shot learners

52

Brown, https://arxiv.org/abs/2005.14165



Nov 29, 2021 R. Michael Churchill, IAEA FDPVA 2021

Pre-training speech recognition models with contrastive 
loss drastically reduces needed labelled data

53

Baevski https://arxiv.org/abs/2006.11477
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SUMMARY
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Fusion 
researcher AI/ML
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Backup

56
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https://sgfin.github.io/2020/06/22/Induction-Intro/
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Control / RL
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Structure (“inductive bias”) can be included in 
neural networks to further enhance performance

59

“Physics”-informed

Mehta, V., et. al. (2020). http://arxiv.org/abs/2006.12682
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Code Acceleration

Design

Prediction and 
detection

Control
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Fusion plasmas have a range of phenomena, 
manifest over multiple time and spatial scales

61
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Accelerating massively parallel XGC code with 
machine learning allows including more physics

62
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