Introduction to the Integrated Modelling & Analysis Suite (IMAS)

S.D. Pinches On behalf of Plasma Modelling & Analysis Section and IMAS Contributors ITER Organization

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Outline

- Introduction
 - What is IMAS and what is it for?
 - IMAS infrastructure: Data Dictionary and Access Layer
 - Physics codes and creation of actors
- Preparations for ITER data processing and analysis
 - Creation of predictive simulations of scenarios
 - High-Fidelity Plasma Simulator
 - Synthetic diagnostic data from diagnostic forward models
 - Data processing and analysis
- Summary

ITER's Integrated Modelling & Analysis Suite

WHAT IS IMAS AND WHAT IS IT FOR?

IMAS for beginners

- The Integrated Modelling & Analysis Suite (IMAS) is the collection of software that will be used for all physics modelling and analysis at ITER
- Uses a modular approach that builds around a standardized data representation that can describe both experimental and simulation data for any device
- Inclusion of machine description data allows development and validation of machine-generic components and workflows within ITER Members' programmes before application on ITER
 - Allows ITER Members to contribute to (and benefit from) developments including:
 - High Fidelity Plasma Simulator and its components
 - Data processing and analysis tools
- More information is available at https://imas.iter.org

Outline of ITER's IM and Analysis Needs

- Predictive workflows for simulations of ITER operation
 - Complete pulse from breakdown to termination
 - Respecting plant limitations (e.g. PF circuits)
 - Free-boundary magnetic equilibrium evolution including realistic plasma transport
 - With multiple impurities (W, Be, He, Ne, Ar, N,...)
 - Extensible to include the plasma edge, scrape-off layer (SOL) & plasma facing components (PFCs)
 - Modular inclusion of sources: heating & current drive (H&CD), fuelling (pellets & gas)
 - Description of transients: confinement (L-H), instabilities (e.g. MHD)
- Hierarchy of validated physics models and workflows of varying degrees of physics fidelity and computational performance
 - Scenario development and physics validation tools including interface with Plasma Control System Simulation Platform (PCSSP)

Physics Integration Challenges

Legend

Magnetic surface features Plasma on closed flux surfaces

Plasma on open flux surfaces

Limiting material surfaces

- Will ultimately require:
 - Coupling of all spatial plasma domains (core, edge, scrape-off layer & divertor)
 - Dynamic coupling of individual physics models relevant to each domain
 - Interaction between plasma and plasma facing components
 - Coupling of plasma with external circuits, heating & current drive, fuelling, pumping and other systems to confine and control plasma

Computational Challenges

- Explore new algorithms and techniques as hardware evolves
 - Re-examine traditional approaches
- Exploit advances in architecture
 - E.g. Speed-up ×50 over single core by using GPU to follow fast ions
 → ×200 using four GPU cards
- Exploit Machine Learning (ML) techniques
 - Speed-up transport models by ×10⁷

Beam ion power flux due to 3D fields from ELM coils, TF ripple and ferritic inserts

R. Akers et al., LOCUST-GPU

Outline of ITER's IM and Analysis Needs

- Analysis, data processing and visualisation tools
 - Hierarchy of plasma reconstruction chains: magnetics-only equilibrium reconstruction → interpretive transport simulations
 - Inference capability to determine physics parameters and their uncertainties from raw measurements
 - Flow-down of diagnostic signals to meet Project Measurement Requirements
 - Diagnostic models (synthetic diagnostics) to support design and performance assessments
 - Data visualisation tools capable of supporting Operations (including Live Display) and Research
 - Tools to support data discovery and listing/filtering data by given criteria

Coordination with ITER Members

IMAS Framework: Data Model & Access Layer

INFRASTRUCTURE

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Data Model

- Data Dictionary defines structuring and naming of data
 - Same data structures used for both experimental (all devices) and simulation data
 - Applicable to all devices (includes Machine Description data) not restricted to ITER
 - Precise design rules ensure global homogeneity
 - Uses a tree structure (allows re-use of names)
 - Well-defined lifecycle procedures allow collaborative evolution of Data Model
- Interface Data Structures (IDSs)
 - Standardised entities for use between software components and storage
 - Examples include plant systems (*diagnostics, heating systems*) and physics concepts (*equilibrium, core plasma profiles*)
 - Contains traceability (provenance) and self-description information
 - Supports modularity and facilitates interchange of components from contributors

IMAS Data Model (3.34.0)

				Heating systems	Diagnostics
See talks by Shaun de Witt, Marcin Plociennik, Michal Owsiak, & Pär Strand today and Friday	amns_data barometry bolometer bremsstrahlung_visible calorimetry camera_ir camera_visible charge_exchange coils_non_axisymmetric controllers core_instant_changes core_profiles core_profiles core_sources core_transport cyrostat dataset_description dataset_fair	disruption distribution_sources distributions divertors ec_launchers ece edge_profiles edge_sources edge_transport em_coupling equilibrium gas_injection gas_pumping gyrokinetics hard_x_rays ic_antennas interferometer	iron_core langmuir_probes lh_antennas magnetics mhd mhd_linear mse nbi neutron_diagnost ntms pellets pf_active pf_passive polarimeter pulse_schedule radiation real_time_data	reflectometer refractometer sawteeth soft_x_rays spectrometer spectrometer spectrometer	_profile _mass _uv _visible _x_ray_crystal
See Mich	Extension of D	Data Dictionary mainly the	nrough application	to new Use Cases	

Extension of Data Dictionary mainly through application to new Use Cases and user feedback. For more details, see links from <u>https://imas.iter.org</u>.

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Using Interface Data Structures (IDS) to couple codes

- The IMAS Access Layer is used to retrieve/store data and also makes coupling codes using IDSs straightforward, even if they are written in different languages
 - Automated definition of data structures for all supported languages
 - Fortran, C++, Python, Java, MATLAB
- This is the basis upon which modular workflows such as plasma simulators and data processing chains are created

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Page 13

Data for Validating IMAS Components and Workflows

- Validation is an important element of IMAS development
- Validation needs data
- Data is only available on existing machines
 - IMAS needs to connect to existing (as well as future) data
- Existing experimental data stored in wide variety of formats
 - ITER DAN data will be stored as HDF5
- IMAS needs to be able to read different storage formats and map into IDSs
 - Data owners write (UDA) plug-ins to read their data formats and map into Data Model
 - On-going voluntary activity with Members
- Mapping device-specific data into Data Model needs managing
 - Data Model allowed to evolve (latest release is v3.34.0)
 - Plug-in based technology demonstrated to manage mapping (e.g. by shot ranges)

IMAS Software Management Tools

Issue Tracking (JIRA)

- Integrated across management tools
- ~4000 issues categorised across ~100 components
- Issues are associated with components and are auto-assigned to the relevant ROs
- Distributed Revision Control (Git)
 - 70+ repositories grouped across 17 projects
 - Branch-based access control
- Automatic building, unit & regression testing, and deployment (CI/CD server)
 - Continuous Integration to support agile development
 - Changes pushed to ITER repositories trigger automatic builds and testing to prevent regression (deny Pull Requests to merge changes)
 - Branch-based testing

Majority of open issues relate to AL and DD

- Issues are associated with IMAS components (infrastructure or physics) and are automatically assigned to individuals ROs
 - Anyone (IO and collaborators) can watch any issue and configure filters to receive automatic notifications

IMAS Releases

<u>https://jira.iter.org</u> → IMAS Project → Releases

🔊 Jir	C Dashboards ✔	Projects 🗸 Issu	ies 🛩 Boards 🛩 Workl	ogPRO 🗸 Insight 🗸	Create		Q Search	4 Ø 🗘
Rele	ases							Manage Ver
Q	QUICK FILTERS: Re	leased Unreleas	sed Archived					🖄 Merge v
Versi	ion name		Start date (op	tional)		Release date (optional))	
	Version	Status	Progress	Start date	Release date	Description		Actions
	4.0.0	UNRELEASED				Next major release of Data Dictionary		
	3.34.0	RELEASED		07/Jun/21	19/Oct/21	Extension of the CORE_PROFILES IDS with volume averaged densities and temperat ing of the SPECTROMETER_X_RAY_CRYSTAL IDS; Modification of the GAS_INJECTIOI Modification of the source/provenance information in all IDSs (new provenance str Renaming of neutron_fluxes into neutron_rates in the SUMMARY IDS. New WORKFI	N IDS; Renaming of the SDN IDS into REAL_TIME_DATA IDS; acture and source becomes obsolescent in ids_properties);	
	3.33.0	RELEASED		07/May/21	30/Jul/21	Refactoring of the REFRACTOMETER IDS. Adding new distances and strike points fo EDGE_PROFILES and DIVERTORS IDS and MAGNETICS IDSs for edge currents and re latency node to all diagnostic and actuator IDSs. Extensions to the THOMSON_SCAT IDSs with an outboard midplane radial coordinate.	lated shunt measurements. Extension of the WALL IDS. Add a	
	3.32.1	RELEASED	No issues	17/Mar/21	01/May/21	Add a geometry matrix to the SPECTROMETER_VISIBLE IDS: Clarification of the defin IDSs, and of the oblique angles in PF_ACTIVE and PF_PASSIVE IDSs; Increase max siz the NEUTRON_DIAGNOSTIC IDS; Addition in the REFLECTOMETER_PROFILE IDS; Ad	e of unit_source AoS and remove superfluous index nodes in	
	3.32.0	RELEASED		21/Jan/21	19/Mar/21	Extension of CORE_PROFILES, EQUILIBRIUM, PF_ACTIVE and SUMMARY ; Improvem ometry of secondary separatrix in EQUILIBRIUM ; Update of DISTRIBUTIONS and DI nels in BOLOMETER ; Increase maximum number of occurrences of MHD_LINEAR ; I Modifications to LH_ANTENNAS and IC_ANTENNAS ; Fix units in DIVERTORS ; Upda	STRIBUTION_SOURCES ; Increase maximum number of chan- ndicate some limitations are specific to MDS+ backend ;	
	3.31.0	RELEASED		13/Oct/20	19/Jan/21	Refactoring of reciprocating probe part of LANGMUIR_PROBES IDS and extension of IDS; New REFRACTOMETER IDS; Addition of gaps to EQUILIBRIUM IDS; Extension of CALORIMETRY IDS; Addition in CORE_SOURCES IDS; New DIVERTORS IDS; Addition Additions and clarifications of PELLETS IDS; New GAS_PUMPING IDS	SUMMARY IDS; Extension of DISRUPTION IDS; Modification of	
	3.30.0	RELEASED		27/Jul/20	29/Sep/20	Extension to the MHD_LINEAR IDS. Increase maximum number of ec_launchers.laur ER_VISIBLE to include polarized light characteristics. Add list of libraries to the code ts for the GGD. Improvement of the MAGNETICS IDS. Modification of LANGMUIR_P the MHD_LINEAR IDS. Addition of code parameters for each transport model to the SCRIPTION IDS. New DATASET_FAIR IDS.	structure and allow for implicit declaration of trivial grid_subse ROBES IDS. Increase the maximum number of occurrences of	
	3.29.0	RELEASED		08/Apr/20	23/Jul/20	New SPECTROMETER_UV and SPECTROMETER_MASS IDSs; Increase number of cha periodicity nodes in COILS_NON_AXISYMMETRIC IDS Extension of PF_ACTIVE, LANC Additions to SUMMARY IDS; Addition of surface to the CORE_* IDSs' radial grid; Co	GMUIR_PROBES, LH_ANTENNAS and MHD_LINEAR IDSs;	•••

IMAS Documentation

More information can be found on the IMAS pages here: <u>https://imas.iter.org</u>

Confluence Spaces • People Questions Cale Pages b			✓ <u>E</u> dit	☆ Save <u>f</u> or later ⊙ <u>W</u> ate	hing < Share	ire
Integrated Modelling Home Created by Jober Robert, last modified by Pinches Simon on 2021-10-2 Welcome to the Integrated Modelling home span These pages are intended to support Users and Dev	ere ce	Iling & Analysis Suite (IMAS) and to help with the success of the ITER Integrated Modelling Progr.	amme		`	
Useful Information	ntroductory	Latest releases of IMAS infrastructure components	Latest releases of IMAS physi	ics components		
Getting Started	information available here	(Available as environment modules on the ITER cluster) IIMAS: 3.34.0-4.9.2-2020b (Release notes) IIMAS Installer: 1.9.4 FC2K: 4.14.0 GGD: 1.10.0 IDStools/1.10.0 IMASPy/0.5.0 PyAL/1.3.5 SimDB/0.5.0 UDA/2.3.1 XMLlib: 3.3.1 Viz/2.4.5 AMNS: 1.3.5 Kepler: 2.5p5-3.2.0 Kepler Installer: 1.8.9	(Available as environment modules on the ITER cluster) HCD: 2.2.0 ASCOT: 4.4.0 CASPER: 1.0.0 CHEASE: 12.14 FoPla: 2.0.0 GENRAY: 10.11.1 GRAYSCALE: 1.0.0 HCD2CORE_PROFILES: 1.0.1 HCD2CORE_SOURCES: 1.0.0 NBISIM: 12.9 NEMO: 2.1.0 PION: 2.0.0 RISK: 2.1.0 SMITER: 1.6.3 SPOT: 2.2.0			ched" to ified of
Reference Documents The ITER Integrated Modelling Programme		Upcoming Events 13th Integrated Modelling Expert Group (IMEG) Meeting, 10 - 14 January 2022	StixReDist: 2.0.0 WFtools: 1.0.1 Past Events 12th Integrated Modelling Expert 11th Integrated Modelling Expert			8-2

🖣 🦾 china eu india japan korea russia usa 🗌

© 2021, ITER Organization

Supporting ITER design activities and performance assessments

HIGH-FIDELITY PLASMA SIMULATOR

IMAS Plasma Simulator

- One of the principle deliverables from the IMAS programme is a plasma simulator to support physics validation of plasma scenarios
- Co-simulations of Plasma Simulator and Plasma Control System Simulation Platform (PCSSP)
 - Basis for physics validation
 - Develop control strategies from plasma initiation to burn control
 - Refine response to events
 - L-H transition
 - Power supply interruption
 - Diagnostic degradation / failure

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Ingredients of High-Fidelity Plasma Simulator

- IO doesn't have resources to develop a full plasma simulator from scratch
- Many existing plasma simulators with a long history of refinement and exploitation have been used by the IO to support the ITER design and the development of the ITER Research Plan, including
 - ASTRA, CORSICA, DINA, JINTRAC, TRANSP,...
- Following initial efforts to align on-going voluntary efforts with IMAS, we now focus upon integrating and refactoring the following key components
 - JINTRAC for core-edge coupled transport simulations (particles and energy)
 - DINA for evolution of magnetic equilibrium and poloidal field (PF) circuit
- In addition, IO staff and interns have developed a Heating & Current Drive (H&CD) workflow to describe (synergistically) all the ITER plasma heating systems and provide the source terms for a HFPS transport solver

GUI to configure the H&CD workflow

GUI dynamically built from code-specific parameters files (xml validated through xsd files)

HCD W RKFLOW				(+ - • ×	Choice of H&CD codes for each source			
WORKFLOW PARAM	ETERS (STANDALONE)	ec wave solver	ECRH torbeam					
input_user_or_path	public	ec_wave_solver	ICRH	•	Configuration	n of code parameters for each code		
input_database	iter	ic_coup	iccoup					
shot_nr	130012	ic_wave_solver	Cyrano		Edit Code Parameters			
run_in	2	ic wave fp	StixReDist	ECRH	Save Restore default E	xit		
output_user_or_path			NBI	torbeam	npow 1			
output_database	default	nbi_source	nemo	ICRH	ncd 1	Workflow and code-specific		
run_out	13	nbi_fp	risk	iccoup	ncdroutine 2			
tbegin	5		NUCLEAR	· · · ·	nprofv 90	configuration stored in a		
tend	395	nuclear_source		Cyrano	noout 0	specific configuration folder		
dt_required	20	nuclear_fp	spot	NBI	nrela 1	specific configuration folder		
Load	Load latest		source	nemo	nmaxh 4			
Save	Run	fill_core_sources	hcd2core_s	risk	nabsroutine 1	Choose Directory 🔿 🖻 🔀		
Save as	Restore Default		profiles	NUCLEAR	nastra 0	Directory: /home/ITER/schneim/public/git/hcd/data 🔯		
Save as		fill_core_profiles		NUCLEAR	nprofcalc 0			
Exit								
	-te-	Edit Code Paramete	ers Show Fl	spot	ncdharm 0	APS_130012_2		
	•	Edit Code Paramete	rs Show FJ	spot source	ncdharm 0 npnts_extrap 0	APS_134173_76 gray run_201021_1		
 Possibi 			rs Show Fl			APS_134173_76 gray run_201021_1 batch_test ios_gray run_201021_1		
	ility to conf	igure a	show Fl	source	npnts_extrap 0	APS_134173_76 gray run_201021_1' batch_test ios_gray run_201021_1; bbnbi_ascot ios_torbeam run_201021_1;		
	ility to conf	igure a	rs Show Fl	source	npnts_extrap 0 nfreq_extrap 0	APS_134173_76 gray run_201021_1' batch_test ios_gray run_201021_1; bbnbi_ascot ios_torbeam run_201021_1; cyrano_stixredist lauber_100015_1 run_201022_1;		
time loo	ility to conf op for stan	igure a dalone	rs Show Fl	source	npnts_extrap 0 nfreq_extrap 0 nrel 0 xrtol 1.e-7 xatol 1.e-7	APS_134173_76 gray run_201021_1' batch_test ios_gray run_201021_1; bbnbi_ascot ios_torbeam run_201021_1;		
time loo	ility to conf	igure a dalone	rs Show Fl	source	npnts_extrap 0 nfreq_extrap 0 nrel 0 xrtol 1.e-7 xatol 1.e-7 xstep 2.0	APS_134173_76 gray run_201021_1' batch_test ios_gray run_201021_1; bbnbi_ascot ios_torbeam run_201021_1; cyrano_stixredist lauber_100015_1 run_201022_1;		
time loo H&CD	ility to conf op for stan	igure a dalone	rs Show Fl	source	npnts_extrap 0 nfreq_extrap 0 nrel 0 xrtol 1.e-7 xatol 1.e-7	APS_134173_76 gray run_201021_1 batch_test ios_gray run_201021_1 bbnbi_ascot ios_torbeam run_201021_1 cyrano_stixredist lauber_100015_1 run_201022_1!		

china eu india japan korea russia usa

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

<u>C</u>ancel

Study of ECH absorption profiles in 2.65 T / 7.5 MA scenarios

- Switching between TORBEAM and GRAY in the H&CD GUI is only one click!
- Since both codes use IDSs, exactly the same input/output is required/provided
- Excellent agreement between TORBEAM (solid) and GRAY (dashed)
 → IMAS platform is well-suited to supporting Verification and Validation

First integrated physics assessment of baseline DT scenario

 Free-boundary equilibrium code DINA and the JINTRAC suite of codes adapted to IMAS and used to simulate the 15 MA / 5.3 T DT Q=10 ITER baseline scenario

For first time, scenario assessed for its entire evolution from early ramp-up phase (from X-point formation) until late ramp-down phase (to X-point-limiter transition) by means of integrated simulations including core, edge, and SOL transport with time-dependent free-boundary plasma geometry and pedestal pressure determined by continuous self-consistent edge MHD stability analysis

Storing Plasma Simulations

- Plasma simulations are stored in an IMAS Scenario Database which now contains
 >750 ITER scenario simulations of various fidelities
- Data is represented as sets of Interface Data Structures (IDSs)
- This is the single source through which all physics simulation data is now made available
 - E.g. To support on-going project design activities including development of diagnostic models (synthetic diagnostics)
- New SimDB tool for improved management of datasets and remote data discovery and retrieval
 - \rightarrow See talk by J Hollocombe today

More than 750 active scenarios in IMAS scenario DB

ulse	Run	Database	Reference	Ip[MA]	B0[T]	Fuelling	Confinement	Workflow
00001	2	ITER	ITER-full-field-H	-15.0	-5.3	н	L-mode	METIS
0002		ITER	ITER-half-field-H	-7.5	-2.65		L-mode	METIS
003		ITER	ITER-third-field-H	-5.0	-1.8		L-H-L	METIS
907		ITER	ITER-intermediate-3T-H	-8.5	-3.0	н	L-H-L	METIS
08		ITER	ITER-intermediate-3.3T-H	-9.5	-3.3	н	L-H-L	METIS
009		ITER			-4.5	н	L-mode	METIS
913		ITER	ITER-PFP01-1.8T-H	-5.0	-1.8	н	L-H-L	METIS
914		ITER	ITER-PFP01-1.81-H ITER-PFP02-1.8T-H-0.5*n GW-NBI_530keV_9.4MW	-5.0	-1.8	н	L-H-L	METIS
915		ITER	ITER-PFP02-1.81-H-0.9*N_GW-NB1_/45KeV_22.3MW	-5.0	-1.8	н	L-H-L	METIS
01		ITER	ITER-nonactive-H	-7.5	-2.65		L-H-L	CORSICA
02		ITER	ITER-nonactive-H	-7.5	-2.65		L-H dithering	CORSICA
603		ITER	ITER-nonactive-H	-7.5	-2.65		L	CORSICA
	3	ITER	ITER-nonactive-H	-9.6	-3.25		L	CORSICA
	3	ITER	ITER-nonactive-H	-12.7		н	L	CORSICA
506		ITER	ITER-nonactive-H	-15.0	-5.3	н	L	CORSICA
507	3	ITER	ITER-nonactive-H	-5.0	-1.77		L-H-L	CORSICA
	50	ITER	<pre>FFP0-2 tf=tE,2NBI,highTped,postST PFP0-2 tf=tE,2NBI,highTped,preST PFP0-2 tf=tE,2NBI,lowTped,postST PFP0-2 tf=tE,2NBI,lowTped,preST PFP0-2 tf=tE,2NBI PFP0-2 tf=tE,2NBI PFP0-2 tf=tE,2NBI PFP0-2 tf=0.3(tF/tE=2)</pre>	-7.5	-2.65		H-mode	ASTRA
	50	ITER	PFPO-2 tf=tE,2NBI,highTped,preST	-7.5	-2.65		H-mode	ASTRA
	50	ITER	PFP0-2 tf=tE,2NBI,lowTped,postST	-7.5	-2.65		H-mode	ASTRA
03	50	ITER	PFP0-2 tf=tE,2NBI,lowTped,preST	-7.5	-2.65		H-mode	ASTRA
904	60	ITER	PFPO-2 tf=2tE,2NBI	-7.5	-2.65		H-mode	ASTRA
005	60	ITER	PFPO-2 tf=tE,2NBI	-7.5	-2.65		H-mode	ASTRA
006	60	ITER	PFPO-2 tf=0.5tE,2NBI	-7.5	-2.65		H-mode	ASTRA
007	40		PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=2) PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=1) PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=0.65) PFP0-1 iterH08.H0HFSBMI	-5.0	-1.8	н	H-mode	ASTRA
	41	ITER	PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=1)	-5.0	-1.8	н	H-mode	ASTRA
007	42	ITER	PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=0.65)	-5.0	-1.8	н	H-mode	ASTRA
	40	ITER		-5.0	-1.8	н	Ohmic	ASTRA
901		ITER	Militello Asp et al IAEA 2016 TH/P2-23 paper Figur		-5.16		L-mode	JINTRAC mkimas
001		ITER	Militello Asp et al IAEA 2016 TH/P2-23 paper Figur			н	L-mode	JINTRAC mkimas
010		ITER	OPE1057 - Three ion ICRH scheme first attempt		-3.13		H-mode	JETTO mkimas
100		iter	Easp F4E-GRT502 H 10MA 20MW L-mode Easp F4E-GRT502 H 15MA 20MW L-mode F4E-GRT502 derived H 9.5MA 4.5T 20MW L-mode	-10.0			L-mode	JINTRAC mkimas
100		iter	Easp F4E-GRT502 H 15MA 20MW L-mode	-15.0	-5.16		L-mode	JINTRAC mkimas
101		iter	F4E-GRT502 derived H 9.5MA 4.5T 20MW L-mode	-9.5	-4.5	н	L-mode	JINTRAC mkimas
	12	ITER	Vasilli H 5.0MA 1.8T L-H transition Vasilli H 5.0MA 1.8T L-H transition Vasilli H 5.0MA 1.8T L-H transition Vasilli H 5.0MA 1.8T L-H transition	-5.0	-1.8	Н	L-mode	JINTRAC mkimas + spider-inverse
102		ITER	Vasilli H 5.0MA 1.8T L-H transition	-5.0	-1.8	н	L-H	JINTRAC mkimas + spider-inverse
	32	ITER	Vasilli H 5.0MA 1.8T L-H transition	-5.0	-1.8	Н	L-H	JINTRAC mkimas + spider-inverse
102		ITER	Vasilli H 5.0MA 1.81 L-H transition Luca H 7.5MA 2.65T Ne rich L-H transition Luca H 7.5MA 2.65T Ne rich L-H transition	-5.0	-1.8	н	H-mode	JINTRAC mkimas + spider-inverse
	12	ITER	Luca H 7.5MA 2.65T Ne rich L-H transition	-7.5			L-mode	JINTRAC mkimas + spider-inverse
	22	ITER	Luca H 7.5MA 2.65T Ne rich L-H transition	-7.5	-2.58		L-H transition	JINTRAC mkimas + spider-inverse
103		TIER	LUCA H 7.5MA 2.651 Ne FICH L-H transition	-/.5	-2.58		L-H transition	JINTRAC mkimas + spider-inverse
	42	ITER	Luca H 7.5MA 2.65T Ne rich L-H transition	-7.5	-2.58		H-mode	JINTRAC mkimas + spider-inverse
104		ITER	Emmi H 7.5MA 2.65T with He, L-H transition	-7.5	-2.65		L-mode	JINTRAC mkimas + spider-inverse
104		ITER	Emmi H 7.5MA 2.65T with He, L-H transition	-7.5	-2.65		L-H transition	JINTRAC mkimas + spider-inverse
104		ITER	Emmi H 7.5MA 2.65T with He, L-H transition	-7.5	-2.65		H-mode	JINTRAC mkimas + spider-inverse
	12	ITER	Emmi H 7.5MA 2.65T with He, L-H transition	-15.0		н	L-mode	JINTRAC mkimas + spider-invers
001		ITER	15MA H-DINA2017-01	-14.97		н	Ohmic	DINA
5002		ITER	15MA H-DINA2018-04	-14.97		н	Ohmic	DINA
	4	ITER	10MA H-DINA2018-03	-10.08		н	Ohmic	DINA
5004	4	ITER	7.5MA H-DINA2016-01	-7.52	-2.65	н	L-mode	DINA

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Redistribution of fast ions by instabilities

- LIGKA/HAGIS Python workflow to assess fast particle stability in ITER scenarios
 - Used fast particle distributions calculated by H&CD workflow (shown above)

Frequencies of predicted Beta-induced Alfvén Eigenmodes (fast particle instabilities) during ITER pulse

Transport of fast ions by instabilities changes evolution of plasma profiles \rightarrow work underway to incorporate these effects in plasma scenario simulations (ITPA/ISFN)

SOLPS-ITER

- SOLPS-ITER is ITER's standard edge physics code
 - Now adapted to archive its data in the form of edge_profiles, edge_sources, edge_transport, and radiation IDSs and use AMNS for A&M rates in B2.5 fluid species
- Now ~500 edge/SOL ITER cases in IMAS database (including all SOLPS4.3 cases)
- New SOLPS-GUI developed to help launch and monitor runs, archive and analyse results in detail
- DivGeo divertor geometry utility can now read/write WALL IDSs

SMITER magnetic field-line tracing code

- SMITER addresses a variety of use cases:
 - Power deposition mapping onto first wall and divertor PFCs
 - Input to control algorithms and production of synthetic surface temperatures for diagnostic design
- Can read/write and manipulate WALL and EQUILIBRIUM IDSs
 - Makes extensive use of the IMAS Generalised Grid Description

L. Kos *et al.*, 30th Symposium of Fusion Technology, (2018)

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Preparing for ITER experimental data

DATA PROCESSING & ANALYSIS

Processing of data must be efficient: ITER will generate Big Data

ITER will have around 50 major diagnostic systems

- For machine protection, control and physics studies
- Data volumes expected to reach up to 2.2 PB of raw data per day

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

ITER will produce Big Data: Volume Estimates

- In DT phase, ITER will operate for 16 out of 24 months
 - -2 years \times 52 weeks \times 16 / 24 = 69 weeks every 2 years
- Operation consists of 2 shifts for 12 / 14 days
 - 12 / 14 × 69 = 59 weeks of data producing days every 2 years
- Typically day expected to produce up to ~2.2 PB of raw data
 - $-2.2 \text{ PB} \times 59 \times 7 / 2 = 0.45 \text{ EB} / \text{year of raw data}$
 - Data processing and analysis will further increase volume, although this is not expected to be significant
 - Largest fraction of data is expected to be camera data

Automated Processing of Data

- Envisaged that many data processing chains will run concurrently (on dedicated hardware) as soon as their input raw data dependencies (in form of IDSs) are satisfied during a pulse
 - Whilst some simple linear chains will have modest computational requirements, more complex statistical (Bayesian) inference chains may consume significant resources
 - Since these latter chains are envisaged to be highly parallelizable, computational capabilities should ensure delivery of processed data does not impact inter-shot time or delay next pulse

→Scalable parallel computing infrastructure

- Close collaboration with devices which can map and serve raw data and matching Machine Description data → allows development and validation of workflows now
- First example/near-term target: magnetics-only equilibria

IMAS Machine Description database

Machine Description available for H&CD systems, many diagnostics, wall, magnetics and coils

• The MD database provides the geometry of the plant systems to be used as input of simulation codes

Toroidal Interfero-Polarimeter

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Page 33

Live Display as in Control Room

Simulation of 7.5 MA / 2.65 T He4 plasma in ITER PFPO

Example control-room Live Display calculated using ITER scenario database and showing plasma equilibrium, waveforms and profiles (based on JINTRAC simulation, shot=110005; run=1), together with synthetic views from the Wide Angle Viewing System (WAVS) (based on shot=122264, run=1).

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Example use of an IMAS synthetic diagnostic

- This example is based on the DIP_TIP_POP model developed by Anna Medvedeva (Monaco Postdoctoral Fellow at ITER) that is used here to simulate the Toroidal Interfero-Polarimeter (TIP) diagnostic
 - The example is run on the ITER SDCC cluster

module load IMAS
git clone ssh://git@git.iter.org/diag/tip.git
mkdir -p ~/public/PYTHON_ACTORS
cd tip
./extract_actor
export PYTHONPATH=~/public/PYTHON_ACTORS/dip_tip:\$PYTHONPATH
mkdir -p ~/public/imasdb/iter/3/0

import os, imas

from imas.imasdef import MDSPLUS_BACKEND,CLOSEST_SAMPLE
from dip_tip.wrapper import dip_tip_actor as dip_tip

SCENARIO AND MD INPUT DATA, LOCAL OUTPUT DATA

shot_scen, run_scen, user_scen, database_scen = 134174, 117, 'public', 'iter'
shot_md, run_md, user_md, database_md = 150305, 1, 'public', 'ITER_MD'
shot_out, run_out, user_out, database_out = 134174, 118, os.getenv('USER'), 'iter'

OPEN SCENARIO DATA

scenario = imas.DBEntry(MDSPLUS_BACKEND,database_scen,shot_scen,run_scen,user_scen)
scenario.open()

OPEN AND READ MACHINE DESCRIPTION DATA

mach_descr = imas.DBEntry(MDSPLUS_BACKEND,database_md,shot_md,run_md,user_md)
mach_descr.open()
interferometer_md = mach_descr.get('interferometer')

CREATE LOCAL OUTPUT DATAFILE

output = imas.DBEntry(MDSPLUS_BACKEND,database_out,shot_out,run_out,user_out)
output.create()

TIME ARRAY

time_array = scenario.partial_get(ids_name='equilibrium',data_path='time')
ntime = len(time_array)

START TIME LOOP

first_time_slice = 1
for itime in range(ntime):

TIME PASSING BY
print('Time = %5.2f' % time_array[itime],'s, itime = ',itime,'/',ntime)

GET EQUILIBRIUM AND CORE_PROFILES FOR CURRENT TIME SLICE

equilibrium_scen = scenario.get_slice('equilibrium', time_array[itime],CLOSEST_SAMPLE)
core_profiles_scen = scenario.get_slice('core_profiles',time_array[itime],CLOSEST_SAMPLE)

RUN THE SYNTHETIC DIAGNOSTIC

interferometer_out = dip_tip(equilibrium_scen, core_profiles_scen, interferometer_md, 'parameters.xml')

SAVE OUTPUT TO LOCAL DATABASE

if first_time_slice == 1:

output.put(interferometer_out) # !!! FOR STATIC DATA TO BE SAVED

else:

output.put_slice(interferometer_out)

first_time_slice = 0

scenario.close()
mach_desc.close()
output.close()

Example (Python) script

Specify database entries for reading plasma scenario, machine description data, and storing output

Open scenario database, read machine description data, and create output database entry

Read equilibrium and core_profiles IDSs

Run synthetic diagnostic

Save output

Loop over time slices

Visualizing synthetic TIP data

• The output can be visualized using the interplot.py script within the tip repository:

python interplot.py -s 134174 -req 117 -rd 118 -db iter -ueq public -ud pinches-t 100

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

Data Analysis and Interpretation Platform

- Call for initial development launched following discussions with ITPA Topical Group on Diagnostics and IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis (driven by IMEG)
 - ITPA Diagnostics provide voluntary support for development, evaluation and testing;
- Minerva being evaluated for rigorous interpretation and analysis of experimental data and for a community of users (IO staff & externals) to gain experience with its use and application
 - Interpret data from individual diagnostics;
 - Unified methodology for integrating data from multiple diagnostics to obtain improved results with derived uncertainties;
 - Support generation of realistic synthetic diagnostic data to assess performance of diagnostics and develop data interpretation techniques;
 - Estimate hardware requirements to support running automated interpretation workflows that combine a realistically achievable combination of diagnostics during ITER's PFPO and FPO phases;

Synthetic diagnostics in Minerva

- Initial focus on diagnostics models for First Plasma and PFPO operation
- Associated Machine Description data (being populated):
 - Magnetic coils, flux loops, Rogowski loops:
 - input = magnetics, pf_active, pf_passive, equilibrium
 - output = magnetics
 - VSRS, H-alpha:
 - spectrometer_visible
 - interferometry:
 - interferometer
 - X-ray spectrometer (edge/core/survey):
 - x_ray_crystal_spectrometer

- Early application:
 - Assessment of diagnostic coverage for early detection of L-H transition in PFPO-2
 - \rightarrow See talk by Anna Medvedeva on Friday

Integrated Data Analysis

Growing list of synthetic diagnostics developed for or adapted to IMAS

- ~20 models

 Start of development of IDA workflows for combining signals

> See talk by Rainer Fischer on combining ECE, TS and interferometry on Friday

Diagnostic (+ITER PBS identifier)	Contacts	Source Code Repository	Dependencies	In IMAS	Regression Tests	Documentation	Demonstration input data	Applications: Design, Physics, Control
Calculates the generic light spectrum for all visible spectrometers and cameras.	Multi-authors. Current main developer: @ Shabashov Aleksei IO contact: @ De Bock Maarten	CASPER	CHERAB	yes	no	In the future to come.		D/P
Charge Exchange Recombination Spectroscopy, for Core / Edge / Pedestal 55.E1 / 55.EC / 55.EF	Author: Alexey Shabashov IO contact: @ De Bock Maarten	CXRS	CHERAB	yes	no	Presentation: 3U2DBZ Report by Maxim Bykov based on old material (Matlab): X3NAVL		D/P
H-alpha and Visible Spectroscopy 55.E2	Author: @ Khusnutdinov Radmir IO contact: @ De Bock Maarten	H-alpha	CHERAB	yes	no	Report: 2N57XR		D/P
Divertor Impurity Monitor (DIM) 55.E4	Author: @ Natsume Hiroki IO contact: @ De Bock Maarten	DIM	CHERAB	yes	no	Presentation: 2C7R9M To be published in Plasma and Fusion Research: 3Z47PC		D/P
Visible Spectroscopy Reference System (VSRS) 55.E6	Author: Bart van den Boorn IO contact: @ De Bock Maarten	VSRS	CHERAB	yes	no	Report: 3AKPSV Presentation: 3TY5AU	134000/60/public/ITER 122264/2/public/ITER	D/P
 55.C5: Toroidal Interferometer Polarimeter (TIP) 55.FA: Density Interfero-Polarimeter (DIP) 55.C6: Poloidal Polarimeter (POP) 	Author, IO contact: @ Medvedeva Anna	DIP_TIP_POP	-	yes	no	Described in the following presentation: IMEG 2020-21 - Development of Synthetic Diagnostics for ITER	100002/1/public/ITER	D/P/C

SUMMARY

S.D. Pinches, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 29 November 2021

The ITER Integrated Modelling Programme

- Imposes a standard for FAIR fusion data and provides associated management tools
 - See talks by Jonathan Hollocombe, Shaun de Witt, Michael Oswiak, Pär Strand, and Marcin Plociennik
- Software using such data is device-generic since Machine Description metadata is part of the standard
 - Allows development, validation and application on today's devices in preparation for ITER operation
 - Many languages and environments supported: C++, Fortran, Python, Java, MATLAB,...
- High-Fidelity Plasma Simulator based upon DINA-JINTRAC in development
 - Loose iterative coupling already successfully demonstrated; H&CD workflow models sources
 - Simulations of ITER stored in IMAS scenario database and available as input to synthetic diagnostics
- Workflows describing additional physics developed for integration with HFPS
 - E.g. Energetic particle stability and transport \rightarrow See talk by Alin Popa
- Development of diagnostic models to generate synthetic signals and preparation of analysis workflows
 - Also used to support diagnostic design and development of control algorithms
 → See talks by Mireille Schneider, Anna Medvedeva, Valentina Nikolaeva, Andrea Pavone, Severin Denk, Andreas Dinklage, Rainer Fischer, Didier Vezinet, Andreas Langenberg and Jorge Morales
- IMAS is being built to meet the needs of ITER but is ready to support today's devices!

Collaboration with the ITER Organization is always welcome

- Voluntary contributions and collaborations
 - Visiting Researchers, ITER Scientist Fellows, ITPA
 - Feel free to contact me about opportunities, <u>Simon.Pinches@iter.org</u>
- Internships
 - Advert for 2022 to appear in early December including development of synthetic diagnostics, see https://www.iter.org/jobs/internships
- Postdoctoral positions
 - Monaco Postdoctoral Fellowships and new ITER postdoctoral positions including proposals in area of integrated modelling, data processing & analysis
 - Next recruitment round starts in January 2022, see https://www.iter.org/Monaco2022
- Staff positions
 - 2 x staff positions in area of integrated modelling, data processing & analysis
 - To be advertised Spring Summer 2022, see <u>https://www.iter.org/jobs</u>