Development of Synthetic Diagnostics for ITER

4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis

3 December 2021

Mireille SCHNEIDER mireille.schneider@iter.org

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

Diagnostics in the ITER Research Plan

The ITER Research Plan will unfold in four stages:

ITER (Synthetic) Diagnostics

Bolomet Determination of the spatial distribution of the radiated power in the plasma and divertor using tomographic reconstruction TOFU_bolo

Bolometric Systems

Spectroscopic Instruments and NPA Systems

Determination of plasma composition, density, particle fluxes, ion temperature, fuelling ratio, plasma rotation, current density; **CASPER, CXRS, XICSRT**

Neutron and Fusion Products Diagnostics

Plasma-Facing and Operational Diagnostics

Assist the machine protection and operation, especially the main chamber and divertor state (temperature, pressure, erosion, dust and tritium monitoring)

iter china eu india japan korea russia usa

M. Schneider – 4^{th} IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

3 Dec. 2021

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

The ITER Integrated Modelling & Analysis Suite (IMAS)

- IMAS is the collection of physics software that will be used to support ITER operations and research as defined in the ITER Integrated Modelling Programme
- It uses standard Interface Data Structures (IDS) for access to experimental and simulated data that are defined in collaboration with the ITER Members
- It is suitable for any fusion device

china eu india japan korea russia usa

- It will be capable of high physics-fidelity predictive simulations of ITER plasmas
- It will be used for ITER data processing and analysis

An IMAS model exchanges IDSs exclusively + an optional xml code parameter file:

 \rightarrow Single component that can be integrated into the IMAS framework.

III The model should not depend on any other external file (for now we use centralised CAD files to be later included in the Machine Description database)

ids4,ids5 = sd_model(ids1,ids2,ids3,xml_codeparam)

Associated development:

ો 🦳 🕯 china eu india japan korea russia usa

- Extension of the IMAS Data Dictionary (some IDSs are too basic or not existing)
- Population of the Machine Description DB with the geometry of ITER diagnostics

SD models in IMAS

Ready

- Working in the IMAS environment enables better portability and traceability of data
- What will SD models in IMAS be used for?

china eu india japan korea russia usa

- Diagnostic performance assessments (for design & optimisation)
- Analysis and interpretation software (not specific to ITER)
- Simulations in which actuators are controlled in response to measurements

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

3 Dec. 2021

Page 10

IMAS scenario database

~1800 simulations for core and/or edge scenarios, among which 680 are active

> Default call equivalent to	>	Default	call	equivalent	to:
------------------------------	---	---------	------	------------	-----

iter

scenario_summary -c shot,run,database,ref_name,ip,b0,fuelling,confinement,workflow

Pulse	Run	Database	Reference	Ip[MA]	B0[T]	Fuelling	Confinement	Workflow
100001	2	ITER	ITER-full-field-H	-15.0	-5.3	Н	L-mode	METIS
100002	1	ITER	ITER-half-field-H	-7.5	-2.65	н	L-mode	METIS
100003	1	ITER	ITER-third-field-H	-5.0	-1.8	н	L-H-L	METIS
100007	1	ITER	ITER-intermediate-3T-H	-8.5	-3.0	н	L-H-L	METIS
100008	1	ITER	ITER-intermediate-3.3T-H	-9.5	-3.3	н	L-H-L	METIS
100009	1	ITER	ITER-intermediate-4.5T-H	-12.5	-4.5	н	L-mode	METIS
100013	1	ITER	ITER-PFP01-1.8T-H	-5.0	-1.8	н	L-H-L	METIS
100014	2	ITER	ITER-PFPO2-1.8T-H-0.5*n_GW-NBI_530keV_9.4MW	-5.0	-1.8	Н	L-H-L	METIS
100015	1	ITER	ITER-PFP02-1.8T-H-0.9*n_GW-NBI_745keV_22.3MW	-5.0	-1.8	н	L-H-L	METIS
100501	3	ITER	ITER-nonactive-H	-7.5	-2.65	Н	L-H-L	CORSICA
100502	3	ITER	ITER-nonactive-H	-7.5	-2.65	н	L-H dithering	CORSICA
100503	3	ITER	ITER-nonactive-H	-7.5	-2.65	н	L	CORSICA
100504	3	ITER	ITER-nonactive-H	-9.6	-3.25	н	L	CORSICA
100505	3	ITER	ITER-nonactive-H	-12.7	-4.7	н	L	CORSICA
100506	3	ITER	ITER-nonactive-H	-15.0	-5.3	н	L	CORSICA
100507	3	ITER	ITER-nonactive-H	-5.0	-1.77	н	L-H-L	CORSICA
101000	50	ITER	<pre>PFPO-2 tf=tE,2NBI,highTped,postST</pre>	-7.5	-2.65	н	H-mode	ASTRA
101001	50	ITER	<pre>PFPO-2 tf=tE,2NBI,highTped,preST</pre>	-7.5	-2.65	н	H-mode	ASTRA
101002	50	ITER	<pre>PFPO-2 tf=tE,2NBI,lowTped,postST</pre>	-7.5	-2.65	н	H-mode	ASTRA
101003	50	ITER	<pre>PFPO-2 tf=tE,2NBI,lowTped,preST</pre>	-7.5	-2.65	н	H-mode	ASTRA
101004	60	ITER	PFPO-2 tf=2tE,2NBI	-7.5	-2.65	Н	H-mode	ASTRA
101005	60	ITER	PFPO-2 tf=tE,2NBI	-7.5	-2.65	н	H-mode	ASTRA
101006	60	ITER	PFPO-2 tf=0.5tE,2NBI	-7.5	-2.65	н	H-mode	ASTRA
101007	40	ITER	PFPO-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=2)	-5.0	-1.8	н	H-mode	ASTRA
101007	41	ITER	PFPO-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=1)	-5.0	-1.8	н	H-mode	ASTRA
101007	42	ITER	PFP0-2 H-5MA-20EC-10NBI Pr=0.3(tF/tE=0.65)	-5.0	-1.8	Н	H-mode	ASTRA

DINA-JINTRAC free boundary core-edge ITER DT scenario 15 MA / 5.3 T

china eu india japan korea russia usa

Tools are available to list (scenario_summary) and visualise (scenplot, kinplot, etc.) all available simulations in the scenario database.

M. Schneider – 4th IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

 $n_e(0)$

 $n_i(0)$

n_T(0) n_D(0)

 $n_{He4}(0)$

 $n_{Be}(0)$

t_{slice}

IMAS Machine Description database

Machine Description available for H&CD systems, many diagnostics, wall, magnetics and coils:

> Default call equivalent to: md_summary -c pbs,ids,description							
PBS IDS DESCRIPTION	SHOT/RUN						
PBSIDSDESCRIPTIONPBS-55.E5spectrometer_x_ray_crystalCore X-Ray Spectrometer (XRCS)PBS-11pf_activePF/CS Coil SystemPBS-11tfTF Coil SystemPBS-11coils_non_axisymmetricEx-Vessel Coils (EVC) Systems (CC)PBS-15coils_non_axisymmetricIn-Vessel Coils (IVC) Systems (ELM)PBS-15coils_non_axisymmetricIn-Vessel Coils (IVC) Systems (ELM periodic)PBS-15coils_non_axisymmetricIn-Vessel Coils (IVC) Systems (VS)PBS-55.cCspectrometer_visibleCharge Exchange Recombination Spectroscopy (CXRS) EdgePBS-55.fLspectrometer_visibleCharge Exchange Recombination Spectroscopy (CXRS) CorePBS-55.F1spectrometer_visibleCharge Exchange Recombination Spectroscopy (CXRS) PedestalPBS-55.F1eceElectron Cyclotron Emission (ECE) - Radial 0-modePBS-55.F1eceElectron Cyclotron Emission (ECE) - Nadial X-modePBS-55.F1eceElectron Cyclotron Emission (ECE) - Oblique X-modePBS-55.F1eceElectron Cyclotron Emission (ECE) - Oblique X-modePBS-55.F1eceElectron Cyclotron Emission (ECE) - Oblique X-modePBS-55.F3interferometerDoroidal Interfero-Polarimeter (TIP)PBS-55.F4interferometerDensity Interfero-Polarimeter (DIP)PBS-53nbiHeating Neutral Beams (HNB) - H beams 870 keV - off-offPBS-53nbiHeating Neutral Beams (HNB) - D beams 1 MeV - off-offPBS-53nbiHeating Neutral Beams (HNB) - D beams 1 MeV - off-offPBS-53 <t< td=""><td>SHOT/RUN 150505/1 111001/1 111002/1 115002/1 115002/1 115002/1 15003/1 150041/2 150512/2 150512/2 150512/2 150501/2 150601/1 150601/3 150601/4 110000/1201 130000/1201 130000/2301 130000/2301 130000/2301 130000/2301</td></t<>	SHOT/RUN 150505/1 111001/1 111002/1 115002/1 115002/1 115002/1 15003/1 150041/2 150512/2 150512/2 150512/2 150501/2 150601/1 150601/3 150601/4 110000/1201 130000/1201 130000/2301 130000/2301 130000/2301 130000/2301						
PBS-55.C6 polarimeter Poloidal Polarimeter (POP) PBS-55.F9.40 refractometer Sub-system refractometer of HFS reflectometer PBS-55.F6 spectrometer_visible Visible Spectroscopy Reference System (VSRS) PBS-16.FC wall First Plasma Protection Components (FPPC)	150306/1 150609/401 150506/2 116000/2 116612/1						

 The MD database provides the geometry of the plant systems to be used as input of simulation codes.

Toroidal Interfero-Polarimeter Lines of sight (toroidal cross-section) **EC** launchers ULs Z [m] 5 EL Y [m] -2 -5 -10-5 0 X [m] R[m]

PP collimator Div. collim.

VV collimator

PP pinhole

Bolometers

iter china eu india japan korea russia usa 📔 @2021, ITE

M. Schneider – 4^{th} IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

3 Dec. 2021

Page 12

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

Examples of IMAS-adapted Synthetic Diagnostics for ITER

Model	Modelled diagnostic or signal	Input IDSs from scenario	Input IDSs from Machine Description or upstream code	Output IDSs	
CASPER	Generic light spectrum for visible spectrometry	equilibrium core_profiles edge_profiles	spectrometer_visible nbi	<pre>spectrometer_visible</pre>	
CXRS	Fit to create synthetic CXRS signal from spectrum		spectrometer_visible	charge_exchange	
DIP_TIP_POP	Toroidal Interfero-Polarimeter Density Interfero-Polarimeter	equilibrium core_profiles	interferometer	interferometer	
	Poloidal Polarimeter		polarimeter	polarimeter	
ECRad	Electron Cyclotron Emission	equilibrium core_profiles	ece	ece	
REFI	LFS and HFS reflectrometers	equilibrium core_profiles	reflectometer_profile	reflectometer_profile	
Refractometer	Refractometry channel of the HFS reflectometer	equilibrium core_profiles	refractometer	refractometer	
TOFU_bolo	Bolometers	edge_sources wall	bolometer	bolometer	
DNFM	Divertor Neutron Flux Monitor	equilibrium distribution_sources	neutron_diagnostic	neutron_diagnostic	
NFM	Neutron Flux Monitor	equilibrium distribution_sources	neutron_diagnostic	neutron_diagnostic	
XICSRT	X-ray Core diagnostic	equilibrium core_profiles	<pre>spectrometer_x_ray_crystal</pre>	<pre>spectrometer_x_ray_crystal</pre>	

Density Interfero-Polarimeter

- 55.FA Density Interfero-Polarimeter (DIP), measures $\int n_e dl$
- Python model by A. Medvedeva \rightarrow see her talk later in this session

out_interferometer = dip_tip_pop(equilibrium,core_profiles,interferometer_md)

M. Schneider – 4^{th} IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

 First Plasma
 21 mode
 PFO-1
 22 mode
 PFO-2
 Mit passes
 PFO-2
 Mit passes
 PFO-2
 Diff passes
 <thDiff passes</th>
 <thDiff passes</th>

tokamak con

Toroidal Interfero-Polarimeter

- 55.C5 Toroid. Interfer. Polarim. (TIP), measures $\int n_e dl$, $\delta n_e/n_e$, $\delta T_e/T_e$
- Python model by A. Medvedeva \rightarrow see her talk later in this session

out_interferometer = dip_tip_pop(equilibrium,core_profiles,interferometer_md)

Poloidal Polarimeter

- 55.C6 Poloid. Polarim. (POP), measures q profile
- Python model by A. Medvedeva \rightarrow see her talk later in this session

out_polarimeter = dip_tip_pop(equilibrium,core_profiles,polarimeter_md)

M. Schneider – 4th IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

PFPO-2

ICRH, NB

ECH - 20 (+10) MM

ECH - 6.7 M

of tokamak core

Reflectometry

PFPO-2 55.F9 (HFS) and 55.F2 (LFS) Measure core/edge n_e profiles, $\delta n_e/n_e$, $\delta T_e/T_e$ H, ICRH, NBI + fu ECH - 6.7 M ECH - 20 (+10) MM ICRH, NBI of tokamak core components REFI model developed by V. Nikolaeva GHz O-mode Input: shot 134173, run 106, time slice 296.9 s F: 90 - 140 Scenario DB ITER Baseline 5.3T 15MA - cutoff frequencies (with relativistic effect) Mach. Descr. DB E: 60 - 90 250 upper X-mode U: 40 - 60 core_profiles Fce reflectometer_profile O-mode Ka: 26.5 - 40 equilibrium lower X-mode 200 K: 18 - 26.5 [ZH] 150 Ku: 12 - 18 X-mode 2 <u>e</u> 100 REFI **REFI** workflow 50 Machine Description DB Scenario DB Physics effects Input LoS, frequencies 0 IDS: equilibrium, reflectometer_profile Relativistic effect m (+ sensitivity to thermal n_e, T_e, B profiles RLos [m] turbulence model displacement) Time-Frequency analysis Cutoff positions Reflectometry signal 17.5 X-mode 400 SD measurement + hardware noises + O-mode 15.0 Beat Frequency [MHz] 0 007-007-200 12.5 Filter, unwrap phase Data processing Fast Fourier Transform 7.5 Je l n_e(r) reconstruction X-mode U band Data analysis $\delta n_e/n_e$ spectrum 5.0 -400 To do 2.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 IDS of REFI SD Output Probing frequency [GHz] to IMAS 0.0 · Beat frequency \rightarrow tof delay \rightarrow radial locations 5 8 RLos [m] Probing frequency \rightarrow density

M. Schneider – 4^{th} IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

iter china eu india japan korea russia usa

3 Dec. 2021 Page 18

Refractometer

refractometer = sd.slice_xml_wrapper(equilibrium,core_profiles,refractometer,xml_filename)

china eu india japan korea russia usa

M. Schneider – 4th IAEA TM on Fusion Data Processing, Validation and Analysis @2021, ITER Organization

3 Dec. 2021 P

ECE synthetic diagnostic for ITER with ECRad

- 55.F1 Electron Cyclotron Emission (ECE)
- Measures T_{ρ} profile and $\delta T_{\rho}/T_{\rho}$
- ECRad model developed by S. Denk, adapted to IMAS with A. Medvedeva
 - \rightarrow Cf. talk by S. Denk, this session.
- First tests for 1.8 T and 2.65 T PFPO scenarios done to predict the ECE system operation and radial resolution

(radial and oblique ECE channels 123-353 GHz, O- and X-mode)

[[]S.S. Denk, CPC 2020]

3 Dec. 2021 Page 20

china eu india japan korea russia usa @2021, ITER Organization

Bolometers

- 55.D1: bolometers, measure radiated power (total + profiles)
- Model using ToFu developed by D. Vezinet: Open Source Python library natively IMAS-compatible, made for SDs and tomography for Fusion
- Forward model and tomographic reconstruction of bolometers using CHERAB, TOFU and TOMOTOK, by M. Brank

(Divertor) Neutron Flux Monitors

- 55.BC: DNFM developed by A. Kovalev
- Fortran and Python versions, all in IMAS

- 55.B4: NFM developed by A. Kovalev
- DNFM and NFM measure the total neutron flux and fusion power:
 - DNFM more sensitive to vertical plasma shift
 - NFM more sensitive to horizontal plasma shift
- → To be combined to deliver a measurement with less systematic error.

X-Ray Crystal Spectrometer Core

- 55.E5 X-Ray Crystal Spectrometer Core, measures T_i and v_{tor}
 XICSRT python code developed by N. Pablant, IMAS-adapted
 - by E. Bourcart and Z. Cheng

spectrometer_x_ray_crystal

china eu india japan korea russia usa

fter

- x_ray_matrix_signal (Python, E. Bourcart)
- Minerva XICS (Java, A. Langenberg)

PFPO-1

ECH - 6.7 M Integrated commis of tokamak core CH, ICRH, NB

Visible Light Spectrum

 CAmera & SPectroscopy Emission Ray-tracer: generates the light spectrum for visible spectroscopy and cameras synthetic diagnostics

iter

- Current status:
 - CASPER provides light spectrum for VSRS and CXRS
 - H-alpha and Divertor Impurity Monitor to be added (with RTM calculation)

Charge Exchange Recombination Spectroscopy

- 55.E1 / 55.EC / 55.EF Core / Edge / Pedestal Charge Exchange Recombination Spectroscopy
- Measure T_i , Z_{eff} , He, impurity profiles, toroidal and poloidal rotation
- Python fit_CXRS model developed by A. Shabashov:
 → reconstruct plasma parameters from spectrum fit

 On-going comparison between sightline and simplified fibre source models

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

Workflow for Spectrometry Modelling

Workflow for Synthetic Diagnostic modelling

Workflow Para	meters (standalone)	Magnetic Diagnostics						lanted from	n
Input User Path	public	(tba)		•	Time Base		OUT at		
Input DB	iter	Neutron Diagnostics (Fusion Products)					H&CD	workflow.	with
Input #Shot	124174	- 55.B4 Neutron Flux		•	Time Base		avtarad	od footuro	•
input #Shot	134174	- 55.BC Divertor Neutron Flux		-	Time Base		extend	eu realure	S
Input #Run	117	Optical Systems / IR Systems							
Output User Path	default	- 55.C5 TIP	dip_ti	p 🗸	Time Base				.1
Output DB	default	- 55.FA DIP	dip tir	D d	Time Base		VVOLKI	ow still und	ler
Output #Run	118	- 55 C6 Popol a	non	· · ·	Time Base		develo	nement	
Start Time [s]	20.0	Beleventrie Sustance	hoh	•	Time base			pomon	
End Time [s]	140.0	= Bolometric Systems			T				
Time Step [s]	2	- 55.DI PP pillioies		-	Time Base				
Load	Load latest	- 55.D1 PP collimators		•	Time Base				
Load	Load Tatest	- 55.D1 Divertor collimators		•	Time Base				
Save	Run	- 55.D1 VV collimators		v	Time Base				
Save as	Restore Default	Spectroscopic Instruments and NPA Syst	ems						
		- Generic Light Spectrum		-	Time Base				
Exit		- 55.E6 VSRS			Time Base				
		- 55.E1 CXRS Core		Models		Save	Restor	e default	Exit
		- 55.EC CXRS Edge			1				-
		- 55.EF CXRS BES		DIP_TIP (tip	_sel)	prot_or	1 1		
		- 55.F2 H-alpha		DTP TTP (din	601)	n_point	s 256		
				DIP_TIP (UIP	_ser)	noise	0.0000	01	
		- 55.E4 DIM	1	POP (non s	el)		10.0000		
		Microwave Diagnostics		(pop					
		- 55.F9.40 Retractometer		•	Time Base				
		Plasma-Facing and Operational Diagnosti	7			_			
- (tba)									
Edit Code Parameters Show Flowchart									
		M. Schneider – 4 th IAEA TM on F	usion Dat	ta Processing, Valid	ation and	 Analysis		3 Dec. 2021	Page

Workflow for Synthetic Diagnostic modelling

Bayesian inference with the Minerva framework

- Minerva is a platform for building large scale scientific models and performing corresponding inference using those models (→ Cf. talk by A. Langenberg)
 - Modular, traceable, versioned
 - Single of combination of diagnostics without information loss

[O. Ford. "*Tokamak Plasma Analysis through Bayesian Diagnostic Modelling*", PhD thesis, University of London, 2010]

- Accounts for uncertainties from measurement, systematic errors and model
- Based on Bayesian probability theory: uncertainties = probability distributions
- Used for forward analysis and experimental design
- Minerva installed in ITER cluster and reads IDSs

ter china eu india japan korea russia usa

Synthetic Diagnostics in Minerva

- First focus on magnetics, VSRS, H-alpha, interferometer, X-ray spectrometer
- Associated Machine Description data (being populated):
 - Coils, flux loops, Rogowski loops:
 - input = magnetics, pf_active, pf_passive, equilibrium
 - output = magnetics
 - EFIT++ reconstruction:
 - input = pf_active, pf_passive, wall, tf
 - output = pf_passive, equilibrium
 - VSRS, H-alpha:
 - * spectrometer_visible
 - interferometry:
 - * interferometer

china eu india japan korea russia usa

- X-ray spectrometer (edge/core/survey):
 - * x_ray_crystal_spectrometer
- Near-term application:
 - Assessment of diagnostic coverage for L-H transition in PFPO (cf talk A. Medvedeva)

 Both pf currents and plasma current included dataDictionaryMajorVersion plasmaBeamEnable enableAutomaticValidatedData enableROValidatedDat enableUnverifiedData enableInvalidData 11116 nagneticMode ---toroidalfluxdoop **Declarative model** "obs" nodes contain both the measured, and for magnetics computed signals

Model to compute toroidal flux loops, saddle loops and pickup probes.

Bayesian techniques with Integrated Data Analysis (IDA)

- Development of a workflow to combine the signals from ECE, TS and interferometry
 → Cf. talk by R. Fischer, this session
- First prototype by R. Fischer using the TIP model from A. Medvedeva
 → Cf. talk by A. Medvedeva, this session
- Adaptation of physics models to be compatible with IDA iteration loops:
 - \rightarrow Separate methods between initialisation steps and evaluation of SD signals
 - → Future IMAS development planned for 2022 on "persistent actors" that would facilitate this

Initialisation of static variables	Defines input scenario, generates time loop, initialise all static data	<pre>init_static()</pre>
Initialisation of dynamic variables according to scenario time step	Execution within the time loop: get_slice, put_slice, etc. (e.g. read equilibrium for this time slice)	<pre>init_dynamic()</pre>
Evaluation of SD signal to be iterated in the IDA loop	Execution within the IDA convergence loop (adjustment of core_profiles quantities)	evaluate()

- Diagnostics in the ITER Research Plan (IRP)
- Synthetic Diagnostics (SD) in IMAS
- Scenario and Machine Description databases
- Examples of Synthetic Diagnostics in IMAS
- Workflows and Bayesian technique platforms
- Summary

Summary

- Databases for ITER scenarios and Machine Description provide input for synthetic diagnostics:
 - Main scenarios from the ITER Research Plan now covered
 - Machine Description database populated for ITER main plant systems
- Significant progress in development of Synthetic Diagnostics for ITER
- IMAS workflow for generating synthetic data under active development
- Progress in using synthetic diagnostics in frameworks using Bayesian techniques:
 - Minerva: SD models for magnetics, VSRS, H-alpha, interferometry, X-ray
 - IDA: prototype workflow for combining signals from ECE, TS, interferometry
- Collaboration on the development of additional diagnostic models is most welcome and support is available