^{by} Tom Neiser

with Adam Eubanks, Orso Meneghini, Sterling Smith, Gary Staebler, Jeff Candy

Presented at the IAEA FDPVA Dec 1st, 2021

Reduced models are important for present and future devices

- TGLF is a quasi-linear model of transport driven by gyrokinetic turbulence
- TGLF is never fit to experiment so that it can be used to test gyrokinetic theory over large datasets and predict plasma profiles
- DIII-D has a large database (DB) of plasma discharges that can be used for big data validation

TGLF employs three saturation rules: SAT0, SAT1 and SAT2

where the free parameters are calibrated by first-principles gyrokinetic simulations using GYRO [2].

[1] G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 14, 055909 (2007)
[2] J. Candy and R. W. Waltz, J. Comput. Phys. 186, 545 (2003)

Goal: Big data validation of TGLF saturation rules

•

•

٠

٠

٠

•

•

Filter: Identify and remove cases where TGLF does not apply

- Removed cases with negative experimental or TGLF fluxes ($Q_{e,i} < 0$), and positive normalized temp. gradients ($a \frac{d \ln T_{e,i}}{dr} > 0$), and large positive density gradients ($a \frac{d \ln n_{e,i}}{dr} > 1$) (left plot)
- No cases with missing toroidal rotation data or MHD activity by NTMs (middle plot)
- No cases with KBMs ($\frac{Q_{EM}}{Q_{ES}} > 0.01$ at $\rho \ge 0.8$), marginally unstable ITG modes or more than 3 zeroes in the quasi-linear weight spectrum (*right plot*)

Summary: SATO, SAT1 and SAT2 were successfully validated

- SAT1 and SAT2 match experiment better than SAT0 at high fluxes (near-edge)
- SAT1 and SAT2 overpredict population of intermediate value fluxes (core)
- Could be due to too sensitive KBM threshold or profile uncertainty (see next slide)

Highlight: SAT1 does well when $\frac{Q_{EM}}{Q_{ES}} < 0.01$

• KBMs were previously filtered out only in the near-edge region such that

 $rac{Q_{EM}}{Q_{ES}}$ < 0.01 for $ho \geq 0.8$

 Remarkable agreement between SAT1 and experiment is found when KBM filter is extended such that

 $rac{Q_{EM}}{Q_{ES}}$ < 0.01 for all ho

• Want to determine if this is due to profile uncertainties and/or too sensitive KBM threshold in TGLF, or some other missing physics (Dimits shift)

Goal: Help direct model development with ML tools

- Multiply SAT1 with an "error factor" ϵ_{SAT1} that can be expressed as a function of plasma parameters
- A suitable functional form for ϵ_{SAT1} is a power law
- We calculate ϵ_{SAT1} with Tensorflow:
 - a. Start from random ϵ_{SAT1} values
 - → b. Compute NN fluxes
 - c. Compare NN fluxes to experimental fluxes
 - d. Update ϵ_{SAT1} to reduce error

[A. Eubanks et al., APS DPP, 2020]

Goal: Help direct model development with ML tools

- Multiply SAT1 with an "error factor" ϵ_{SAT1} that can be expressed as a function of plasma parameters
- A suitable functional form for ϵ_{SAT1} is a power law
- We calculate ϵ_{SAT1} with Tensorflow:
 - a. Start from random ϵ_{SAT1} values
 - → b. Compute NN fluxes
 - c. Compare NN fluxes to experimental fluxes
 - d. Update ϵ_{SAT1} to reduce error

Analytic expression for error factor in terms of plasma parameters is found with symbolic regression

• Want to balance accuracy with complexity:

$$\epsilon_{\text{SAT1}} \propto \frac{(1-a/L_{n_e})^{0.70}q^{0.94}(\nu_{ei}+\epsilon_0)^{0.51}}{(1-a/L_{n_i})^{1.70}(-a/L_{T_e})^{0.56}(p'+\epsilon_0)^{1.14}}$$
$$\epsilon_0 = 10^{-3}$$

Analytic expression for error factor in terms of plasma parameters is found with symbolic regression

• Want to balance accuracy with complexity:

- Next: Want to identify theoretical mechanism explaining ϵ_{SAT1} parameter dependence (e.g. thresholds of KBM/ITG/TEM turbulence)
- Recommend scans in p', v_{ei} , dv_{ExB}/dr to add to CGRYO database

Using plasma params scanned in existing GYRO DB, an error factor can also be found for TGLF vs GK DB

$$\epsilon_{\text{SAT1}} \propto \frac{(1-a/L_{n_e})^{0.70} q^{0.94} (\nu_{ei} + \epsilon_0)^{0.51}}{\left(1-a/L_{n_i}\right)^{1.70} (-a/L_{T_e})^{0.56} (p' + \epsilon_0)^{1.14}}$$

$$\epsilon_{\text{SAT1,GK}} \propto \frac{(1-a/L_{n_e})^{0.45} (T_i/T_e)^{0.31}}{(-a/L_{T_e})^{0.18} (-a/L_{T_i})^{0.56} \kappa^{0.82} \delta^{0.01} q^{0.30} q'^{0.25}}$$

- Error factor $\epsilon_{SAT1,GK}$ gives better fit of SAT1 to GK database
- Confirms need for extension of GK DB with scans in temperature and density gradients
- Recommends extension in GK DB with scans in temperature ratio, elongation and safety factor

Using plasma params scanned in existing GYRO DB, an error factor can also be found for TGLF vs GK DB

- TGLF× $\epsilon_{SAT1,GK}$ shows only minor difference to TGLF SAT1 validation
- Therefore, difference between SAT1 and experiment could also be due to limited GK coverage at lower fluxes

Summary: Validated TGLF SAT rules and found avenues for further saturation rule development

- SAT1 and SAT2 match experiment better than SAT0 at high fluxes (nearedge), and overpredict population of fluxes deeper in core (correlated with $Q_{EM}/Q_{ES} > 0.01$)
- This could be due to profile uncertainty in experiments, too sensitive thresholds for turbulent heat flux in TGLF, and limited GK DB coverage

Next steps:

- Quantify sensitivity of TGLF to profile uncertainties (run TGLF with varied input parameters)
- Study thresholds for turbulent fluxes (run TGLF with varied $a/L_{T_{ei}}$, $a/L_{n_{ei}}$)
- Want to validate quasi-linear weights, namely the other factor in the heat flux calculation (run linear CGYRO simulations over sample of DB)

Epilogue

This work is supported by the U.S. DOE under DE-FC02-04ER54698, DE-SC0017992, DE-FG02-95ER54309, and DE-AC02-09CH11466.

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

