Development of the ITER synthetic reflectometry diagnostic (REFI)

Valentina Nikolaeva, Antoine Sirinelli

ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France

V. Nikolaeva is supported through the Monaco/ITER postdoctoral fellowship program Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

> V. Nikolaeva, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 02.12.2021

Outline:

- Reflectometry principle
- Workflow of reflectometry SD
- REFI primary simulation results
- Further tasks

Dictionary:

REFI: SD reflectometry for ITER HFS&LFS: High and Low Field Side reflectometry

SD: synthetic diagnostic - computational module to simulate realistic output signals of a real diagnostic based on plasma and plant parameters

IMAS: Integrated Modelling & Analysis Suite integrated modelling platform to provide managed access to ITER database (experimental & simulation) in a standardized way

IDS: Interface Data Structures represented in IMAS More details in Introduction to IMAS by Simon Pinches

Goals:

Apply SD model to time slices from IMAS DB to:

- make a performance assessment [Design (D)]
- predict diagnostics measurements [Physics (P) and Control (C)]

Requirements:

- Accuracy & operational range
- Computational time & time response
- Approximations & assumptions
- Consistency

Reflectometry principle

Radar technique, EM waves reflect from the plasma

 n_e profiles: analysis of time required for EM wave with frequency F to travel from antenna to cut-off plasma region and to get back [time-of-flight-delay (TFD) T]

 $I(t) = A(t)\cos(\phi(t))$ and $Q(t) = A(t)\sin(\phi(t))$ phase $\varphi = \tan^{-1}(Q/I) \rightarrow \text{density profile \& fluctuations}$

$$\phi(t) = \frac{4\pi F}{c} \int_{R_0}^{R_c} N(F, R) \, \mathrm{d}R - \frac{\pi}{2}$$

$$\frac{\partial \phi(t)}{\partial t} = \frac{4\pi}{c} \left[\frac{\partial F}{\partial t} \int_{R_0}^{R_c} N(F, R) \, \mathrm{d}R + F \frac{\partial}{\partial t} \left(\int_{R_0}^{R_c} N(F, R) \, \mathrm{d}R \right) \right]$$

$$F_{cutoff} = \frac{1}{2\pi} \begin{cases} \omega_p (O - mode \ cutoff) \\ \left(\sqrt{\omega_p^2 + (\omega_c/2)^2} - (\omega_c/2)\right)(X - mode \ lower \ cut - off) \\ \left(\sqrt{\omega_p^2 + (\omega_c/2)^2} + (\omega_c/2)\right)(X - mode \ upper \ cut - off) \\ \omega_p^2 = \frac{4\pi n_e e^2}{m_e}, \ \omega_c = \frac{eB}{m_e c} \end{cases}$$

Measurements

ITER Reflectometry is fully available from PFPO-2

HFS:

Primary: core n_e profiles, $\delta n_e/n_e$, ELM Density Transient, TAE, MHD

Supplementary: edge n_e profiles,

 $\int n_e dl / \int dl$ refractometry – done by K. Afonin

https://git.iter.org/projects/DIAG/repos/refractometer/

LFS:

Primary: edge n_e profiles, $\delta n_e/n_e$, ELM Density Transient, TAE, MHD

Supplementary: poloidal velocity, $\int n_e dl / \int dl$, core n_e profiles

Examples of addressed questions:

- Design: Measurement of edge density down to ~1e18 m⁻³ for the ICRF coupling R cutoff density location
- 2. Physics: L-H transition characterization (pedestal formation, steep gradients)
- 3. Control: Advanced plasma control, on-line n_e(r)

REFI workflow

Modules in Python (signal simulation, analysis, incorporation)

REFI workflow: In Work; TBD

Use case: Diagnostic performance

- Simulating diagnostic as accurately as possible
- Diagnostic raw & analyzed data generated for all time points of an input scenario
- Results stored in IMAS as diagnostic output of that scenario
- Calculation time allowed to take a while, error estimates as accurate as possible

IMAS SD models

Input IDSs from Scenario DB: equilibrium, n_e, T_e, B core profiles

Input IDSs from Machine Description DB: LoS, frequencies (+ sensitivity to thermal displacement)

Output IDSs: $n_e(r); \delta \phi / \phi$

Modelled diagnostic or signal: HFS and LFS reflectometers

Synthetic Diagnostic Integration Data Analysis IDA

IDM: 4RPFVL by Mireille Schneider

HFS REFI intermediate simulation results

HFS REFI intermediate simulation results

Density profile reconstruction

D. Shelukhin et al. Rev. Sci. Instrum. 89, 094708 (2018)

Plasma permittivity profile \rightarrow linear approximation between the radial positions of the reflections at probing frequencies

$$\begin{split} \varphi_i &= 2 \cdot \frac{2\pi F}{c} \cdot \int_{R_0}^{R_i} \sqrt{\varepsilon(r,F)} dr + \frac{\pi}{2} \\ &= \frac{\pi}{2} + \frac{4\pi F}{c} \sum_{j=0}^{i-1} \left[\int_{R_j}^{R_{j+1}} \sqrt{k_j^{j+1} \cdot r + b_j^{j+1}} dr \right] \end{split}$$

$$k_j^{j+1} = \frac{\varepsilon_{j+1} - \varepsilon_j}{R_{j+1} - R_j}, b_j^{j+1} = \varepsilon_j - k_j^{j+1} \cdot R_j$$

Similar to Bottolier-Curtet and Ichtchenko algorithm

V. Nikolaeva, 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 02.12.2021

Conclusions and perspectives

- Synthetic reflectometry diagnostic REFI is being developed
- Assessment of the HFS reflectometry signals is ongoing

To do:

- Add module for the LFS REFI
- Check performance and coverage of SDs across DB
- Density profile reconstruction
- Incorporate SD and IDS to IMAS
- Check consistency (analysis in different plasma scenarios, simulations, comparison with experimental data)

International Reflectometry Workshop IRW15 8 – 10 June 2022 at ITER, France

Contact: <u>Antoine.Sirinelli@iter.org</u> <u>Valentina.Nikolaeva@iter.org</u>