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Connecting Two Key Ideas for ITER and Fusion Pilot Plant
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How Can We Ensure the Survival of Divertor Components 
At the Extreme Scale of Fusion Reactor Devices?

• Plasma facing components in a fusion reactor will be 
destroyed by unmitigated power and particle fluxes

• Neutral gas puff can dissipate excess fluxes by detaching the 
divertor plasma

• Actuation strategies must manage scrape-off-layer dynamics 
while upholding core performance

v Present devices employ simple controllers that are tuned on 
forgiving short pulses

1Alcator C-Mod
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How Can We Ensure the Survival of Divertor Components 
At the Extreme Scale of Fusion Reactor Devices?
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1Adapted [Federici et al., 2001], 2[Bonnin et al., 2016], 3[Kaveeva et al., 2018], 4[Brunton et al., 2016]

• SOLPS-ITER is the state-of-the-art tool for simulating the 
reduction of heatflux loads due to gas puff detachment2

• Tokamak edge plasma simulations are expensive, 
requiring upwards of days-weeks-months wall clock time 
to converge towards a steady-state solution3

• Data-driven sparse identification of nonlinear dynamics 
(SINDy)4 provides a scheme for real-time reduced 
modeling of tokamak edge physics

v Data-driven model predictive control can be deployed 
on experiments to handle nonlinear dynamics
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The SINDy Gray Box Approach to Machine Learning

5 Adapted from [Kaiser et al., 2018]
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SINDy Enables Efficient Application of Model Predictive 
Control Paradigm to SOLPS-ITER

A. Fixed Point Steady-state
A. Perturb dynamics around equilibrium                                  

through actuation and response

5 Adapted from [Kaiser et al., 2018]

5
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A. Simulation Cases of Scrape-off-layer Dynamics Probe a 
Range of Actuation Rates and Output Variables

1 2 3 4 5

Baseline steady-state
Perturbed response
Case marker

In Sample Out of Sample

5-Fold Cross-Validation

Extracted Linear Model

Partition database into independent training and testing intervals 

Data Interval

SOLPS simulation
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SINDy Enables Efficient Application of Model Predictive 
Control Paradigm to SOLPS-ITER

A. Fixed Point Steady-state
– Perturb dynamics around equilibrium                                  

through actuation and response

B. Bimodal Automated Algorithm
– Prediction of timeseries evolution and confidence
– Exploration of reference runs to provide bounds

5 Adapted from [Kaiser et al., 2018]

5
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B. Automated Algorithm Identifies Operable Limits of 
Extracted Model for Out of Sample Predictions 

Excluded bounds
Perturbed response
Tested model

Library Cross-Reference

?

Extracted Model

Poll pre-selected cases for a priori detection of model deviations

obtained in 0.0085s

0.0057s evaluation

Initialized Query

Reduced model
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B. Automated Algorithm Applies a Rolling Time Horizon to 
Update Model Progressively for In Sample Data

Chain together observed timeseries for a posteriori model updating 

Final  Model

Prediction Horizon
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Final models
Early models

Rolling Cross-Validation

!Eureka
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SINDy Enables Efficient Application of Model Predictive 
Control Paradigm to SOLPS-ITER

A. Fixed Point Steady-state
– Perturb dynamics around equilibrium                                  

through actuation and response

B. Bimodal Automated Algorithm
– Prediction of timeseries evolution and confidence
– Exploration of reference runs to provide bounds

C. Set Point Trajectory
– Control divertor target temperatures through reduced model
– Maintain fast evaluations through discretized cost function
– Evaluate performance through direct application to SOLPS-ITER

5 Adapted from [Kaiser et al., 2018]

5
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C. Model Captures Dynamics for Target Setpoint Control
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optimization
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Evaluate reduced model by minimizing cost-function on the prediction
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Evaluating Offline Automated MPC for SOLPS Simulation
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Connecting Two Key Ideas for Model Predictive Control

Data reliant 
variable horizon

5 Adapted from [Kaiser et al., 2018], target DIII-D Plasma Control System (PCS)
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Summary – Automated Reduced Modeling is Capable of 
Offline Predictive Control of Divertor Target Temperatures

1Adapted from [Federici et al., 2001]

power flow

radiating front
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• Bimodal Paradigm
– Cross-validation in and out of sample for predictive

and explorative metrics of model deviation
– Demonstrated automated algorithm over 

heterogeneous system response to actuation

• Remaining Challenges
– Extend steady-state results to analysis of bifurcations 

and nonlinear parameter-sensitive regimes
– Incorporate impurity seeding and divertor 

detachment physics into system identification
– Utilize device component physical constraints in 

optimization and experimental systems
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